Suppr超能文献

采用单点增量成形与生物活性涂层相结合的创新策略增强用于生物医学应用的镁基材料。

Enhancing magnesium-based materials for biomedical applications using an innovative strategy of combined single point incremental forming and bioactive coating.

作者信息

Ruggiero Roberta, Marano Rosa Maria, Marrelli Benedetta, Facente Anastasia, Aiello Elisabetta, Conte Romina, Serratore Giuseppe, Ambrogio Giuseppina, Paduano Francesco, Tatullo Marco

机构信息

Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, 88900, Crotone, Italy.

Department of Mechanical, Energy and Management Engineering, University of Calabria, P. Bucci Cube 45C, 87036, Rende, CS, Italy.

出版信息

J Mech Behav Biomed Mater. 2025 Mar;163:106858. doi: 10.1016/j.jmbbm.2024.106858. Epub 2024 Dec 9.

Abstract

BACKGROUND

Magnesium (Mg) and its alloys are promising candidates for biodegradable materials in next-generation bone implants due to their favourable mechanical properties and biodegradability. However, their rapid degradation and corrosion, potentially leading to toxic byproducts, pose significant challenges for widespread use.

OBJECTIVES

This study aimed to address the challenges associated with Mg-based materials by thoroughly evaluating the biocompatibility, genotoxicity, and mechanical properties of Mg-based devices manufactured via Single Point Incremental Forming (SPIF). Additionally, the study explored the efficacy of a bioactive coating in enhancing the biocompatibility of these devices.

METHODS

The biocompatibility of six different Mg-SPIF substrates was assessed using an indirect cytotoxicity assay while genotoxicity was evaluated using the Ames test. Mg-based implants were subjected to roughness and thickness tests, as well as metallographic observations. To enhance biocompatibility, a coating comprising sodium hydroxide (NaOH), ascorbic acid (AA), and bovine serum albumin (BSA) was applied to the most promising Mg-SPIF devices.

RESULTS

None of the Mg-SPIF devices demonstrated genotoxicity. Out of the six devices evaluated, only two, which had lower surface roughness, exhibited the most favourable biocompatibility responses. Additionally, the surface functionalization strategy significantly enhanced the biocompatibility of these Mg-SPIF devices, demonstrating up to 70% improvement in cell viability compared to unmodified substrates, indicating substantial enhancement in biological performance.

CONCLUSIONS

These results underscore the potential of SPIF Mg-based materials, particularly when enhanced with a bioactive OH-AA-BSA coating, to revolutionize medical implant technology by providing a safer and more effective option for a wide range of biomedical applications. While these in vitro findings are very promising, translation to clinical applications requires comprehensive in vivo validation, focusing on degradation kinetics, local tissue response, and mechanical integrity under physiological conditions.

摘要

背景

镁(Mg)及其合金因其良好的机械性能和生物降解性,有望成为下一代骨植入物中可生物降解材料的候选者。然而,它们的快速降解和腐蚀可能会产生有毒副产物,这对其广泛应用构成了重大挑战。

目的

本研究旨在通过全面评估通过单点增量成型(SPIF)制造的镁基器件的生物相容性、遗传毒性和机械性能,来应对与镁基材料相关的挑战。此外,该研究还探索了生物活性涂层在增强这些器件生物相容性方面的功效。

方法

使用间接细胞毒性试验评估六种不同镁 - SPIF 基底的生物相容性,同时使用艾姆斯试验评估遗传毒性。对镁基植入物进行粗糙度和厚度测试以及金相观察。为了提高生物相容性,将一种包含氢氧化钠(NaOH)、抗坏血酸(AA)和牛血清白蛋白(BSA)的涂层应用于最有前景的镁 - SPIF 器件。

结果

没有一个镁 - SPIF 器件表现出遗传毒性。在评估的六个器件中,只有两个表面粗糙度较低的器件表现出最有利的生物相容性反应。此外,表面功能化策略显著增强了这些镁 - SPIF 器件的生物相容性,与未改性的基底相比,细胞活力提高了高达 70%,表明生物学性能有显著增强。

结论

这些结果强调了 SPIF 镁基材料的潜力,特别是当用生物活性 OH - AA - BSA 涂层增强时,通过为广泛的生物医学应用提供更安全、更有效的选择,有可能彻底改变医疗植入技术。虽然这些体外研究结果非常有前景,但向临床应用的转化需要全面的体内验证,重点关注降解动力学、局部组织反应以及生理条件下的机械完整性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验