Cook Mariah A, Phelps Shelby M, Tutol Jasmine N, Adams Derik A, Dodani Sheel C
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
Curr Opin Chem Biol. 2025 Feb;84:102548. doi: 10.1016/j.cbpa.2024.102548. Epub 2024 Dec 9.
Anions are critical to all life forms. Anions can be absorbed as nutrients or biosynthesized. Anions shape a spectrum of fundamental biological processes at the organismal, cellular, and subcellular scales. Genetically encoded fluorescent biosensors can capture anions in action across time and space dimensions with microscopy. The firsts of such technologies were reported more than 20 years for monoatomic chloride and polyatomic cAMP anions. However, the recent boom of anion biosensors illuminates the unknowns and opportunities that remain for toolmakers and end users to meet across the aisle to spur innovations in biosensor designs and applications for discovery anion biology. In this review, we will canvas progress made over the last three years for biologically relevant anions that are classified as halides, oxyanions, carboxylates, and nucleotides.
阴离子对所有生命形式都至关重要。阴离子可以作为营养物质被吸收或通过生物合成产生。阴离子在生物体、细胞和亚细胞尺度上塑造了一系列基本的生物过程。基因编码的荧光生物传感器可以通过显微镜在时间和空间维度上捕捉正在起作用的阴离子。20多年前就报道了首批用于单原子氯离子和多原子环磷酸腺苷阴离子的此类技术。然而,最近阴离子生物传感器的蓬勃发展揭示了工具制造商和终端用户仍有待跨越界限共同探索的未知领域和机遇,以推动生物传感器设计和发现阴离子生物学应用方面的创新。在这篇综述中,我们将概述过去三年在生物相关阴离子方面取得的进展,这些阴离子被分类为卤化物、含氧阴离子、羧酸盐和核苷酸。