Liu Bingchuan, Chen Jinchen, You Yingying, Sun Mei
Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
Water Res. 2025 Mar 15;272:122915. doi: 10.1016/j.watres.2024.122915. Epub 2024 Dec 4.
Ion exchange (IX) can effectively remove per- and poly-fluoroalkyl substances (PFAS) from drinking water sources at ng/L to µg/L levels. However, adsorbed PFAS on spent resins should be further destructed for detoxification. Traditional resin incineration or landfilling may cause secondary pollution to the surrounding environment and cannot achieve resin reuse. This study explored three variations of a PFAS treatment train, aiming to completely defluorinate PFAS with different chain lengths and functional groups at environmentally relevant levels (ng/L) and to reuse the resins and solvents. The optimized treatment train includes IX, resin regeneration with 5 wt% NaCl and 60 % v/v methanol, distillation of waste regenerant, and advanced reduction by hydrated electrons (e) generated during the ultraviolet/sulfite (UV/sulfite) treatment of still bottoms. Such a treatment train achieved nearly 100 % PFAS removal from surface water and groundwater using either PFAS-specific or generic resins, and almost 100 % defluorination of PFAS except a few short-chain fluorinated sulfonates and ethers. Regenerated resins had comparable PFAS removal to the pristine resins over three cycles. The generic resins (e.g., Dupont AmberLite™ IRA910) are easier to regenerate and thus are recommended for the treatment train over PFAS-selective resins (e.g., Purofine® PFA694E). Direct heterogenous defluorination on resins loaded with perfluorooctane sulfonate (PFOS) was ineffective, potentially due to the consumption of UV light/e by the resins and insufficient contact between the UV light/e with PFOS on the resin surface. Distillation of the waste regenerant successfully concentrated PFAS in the still bottoms, reduced the waste volume, and removed excess methanol, all essential for effective UV/sulfite treatment. Meanwhile, the produced condensate with high methanol contents and low PFAS levels can be reused for the next regeneration cycle. Findings from this study provide a timely and sustainable solution to the stringent and evolving regulations on PFAS and the resultant production of PFAS-laden resins as hazardous wastes.
离子交换(IX)能够有效去除饮用水源中纳克/升至微克/升水平的全氟和多氟烷基物质(PFAS)。然而,废树脂上吸附的PFAS应进一步销毁以进行解毒。传统的树脂焚烧或填埋可能会对周围环境造成二次污染,并且无法实现树脂的再利用。本研究探索了PFAS处理流程的三种变体,旨在在环境相关水平(纳克/升)下完全脱除不同链长和官能团的PFAS,并实现树脂和溶剂的再利用。优化后的处理流程包括离子交换、用5 wt%的氯化钠和60 % v/v的甲醇进行树脂再生、废再生剂的蒸馏,以及对蒸馏残渣进行紫外线/亚硫酸盐(UV/亚硫酸盐)处理过程中产生的水合电子(e)进行深度还原。这样的处理流程使用PFAS特异性树脂或通用树脂,从地表水和地下水中去除PFAS的效率接近100%,除了一些短链氟化磺酸盐和醚类外,PFAS的脱氟率几乎达到100%。再生树脂在三个循环中对PFAS的去除效果与原始树脂相当。通用树脂(如杜邦AmberLite™ IRA910)比PFAS选择性树脂(如Purofine® PFA694E)更容易再生,因此推荐用于该处理流程。在负载全氟辛烷磺酸(PFOS)的树脂上直接进行非均相脱氟是无效的,这可能是由于树脂消耗了紫外线/电子,并且紫外线/电子与树脂表面的PFOS之间接触不足。废再生剂的蒸馏成功地将PFAS浓缩在蒸馏残渣中,减少了废物体积,并去除了过量的甲醇,所有这些对于有效的UV/亚硫酸盐处理都是必不可少的。同时,产生的甲醇含量高、PFAS水平低产生的冷凝物可用于下一个再生循环。本研究的结果为针对PFAS的严格且不断演变的法规以及由此产生的作为危险废物的含PFAS树脂的生产问题,提供了一个及时且可持续的解决方案。