Suppr超能文献

MDbDMRP:一种基于新型分子描述符的计算模型,用于识别药物-微小RNA关系。

MDbDMRP: A novel molecular descriptor-based computational model to identify drug-miRNA relationships.

作者信息

Daroch Amit, Purohit Rituraj

机构信息

Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Palampur, HP 176061, India.

Academy of Scientific and Innovative Research, Ghaziabad 201002, India.

出版信息

Int J Biol Macromol. 2025 Jan;287:138580. doi: 10.1016/j.ijbiomac.2024.138580. Epub 2024 Dec 8.

Abstract

MicroRNAs (miRNAs) are important in gene expression regulation and many other biological processes and have emerged as promising therapeutic targets. Identifying potential drug-miRNA relationships is helpful in disease therapy and pharmaceutical engineering in medical research. However, accurately predicting these relationships remains a significant computational challenge. This study introduces MDbDMRP, a novel molecular descriptors-based drug-miRNA relationship prediction computational model designed to address this challenge. MDbDMRP leverages the power of machine learning to predict new drug-miRNA associations and non-associations. The model achieves exceptional performance, exceeding an average score of 0.92 across various evaluation metrics, including accuracy, precision, recall, and F1-score. Furthermore, it demonstrates a remarkable ability to distinguish between positive and negative interactions, as evidenced by an outstanding AUC-ROC score of 0.9864. The results obtained from MDbDMRP were further validated through molecular docking, reinforcing its performance. These results position MDbDMRP as a valuable tool for researchers aiming to unlock the potential of miRNAs in drug discovery.

摘要

微小RNA(miRNA)在基因表达调控和许多其他生物过程中起着重要作用,并已成为有前景的治疗靶点。识别潜在的药物 - miRNA关系有助于医学研究中的疾病治疗和药物工程。然而,准确预测这些关系仍然是一个重大的计算挑战。本研究介绍了MDbDMRP,这是一种基于新型分子描述符的药物 - miRNA关系预测计算模型,旨在应对这一挑战。MDbDMRP利用机器学习的力量来预测新的药物 - miRNA关联和非关联。该模型取得了优异的性能,在包括准确性、精确性、召回率和F1分数在内的各种评估指标上平均得分超过0.92。此外,它具有显著区分正负相互作用的能力,AUC - ROC得分高达0.9864证明了这一点。通过分子对接进一步验证了MDbDMRP获得的结果,加强了其性能。这些结果使MDbDMRP成为旨在挖掘miRNA在药物发现中潜力的研究人员的宝贵工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验