Suppr超能文献

用于从单个患者来源的神经球获得个性化神经生物学见解的优化流程。

Optimized pipeline for personalized neurobiological insights from single patient-derived Neurospheres.

作者信息

Nugue Guillaume, Martins Michele, Vitória Gabriela, Guimaraes Beatriz Luzia De Mello Lima, Quiñones-Vega Mauricio, Rehen Stevens, Guimarães Marilia Z, Junqueira Magno

机构信息

Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.

D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.

出版信息

J Proteomics. 2025 Mar 20;313:105368. doi: 10.1016/j.jprot.2024.105368. Epub 2024 Dec 8.

Abstract

This pipeline presents a refined approach for deriving personalized neurobiological insights from iPSC-derived neurospheres. By employing Tandem Mass Tag (TMT) labeling, we optimized sample pooling and multiplexing for robust comparative analysis across experimental conditions, maximizing data yield per sample. Through single-patient-derived neurospheres-composed of neural progenitor cells, early neurons, and radial glia-this study explores proteomic profiling to mirror the cellular complexity of neurodevelopment more accurately than traditional 2D cultures. Given their enhanced relevance, these 3D neurospheres serve as a valuable model for elucidating neurogenesis, differentiation, and neuropathological mechanisms, contributing to the advancement of in vitro neural models and reducing dependency on animal models. SIGNIFICANCE: This study evaluates ten protein extraction protocols using TMT 10-plex labeling to optimize proteomic analysis from single neurospheres. It compares cost, protein yield, and the ability to detect differentially expressed proteins, identifying methods like SPEED and S-Trap as efficient for high-throughput studies, while FASP excels in peptide yield. TMT labeling enhances protein identification, particularly for low-abundance proteins, and allows pre-fractionation to maximize analysis from limited samples. However, challenges such as limited PTM analysis and the potential loss of minor proteins highlight the importance of selecting protocols based on specific research goals. This work contributes to optimizing proteomic workflows for in vitro neural models, advancing single-cell analysis with minimal reliance on animal models.

摘要

该流程提出了一种从诱导多能干细胞衍生的神经球中获取个性化神经生物学见解的优化方法。通过采用串联质谱标签(TMT)标记,我们优化了样本合并和多路复用,以便在不同实验条件下进行稳健的比较分析,从而最大化每个样本的数据产出。通过单患者来源的神经球(由神经祖细胞、早期神经元和放射状胶质细胞组成),本研究探索蛋白质组学分析,以比传统二维培养更准确地反映神经发育的细胞复杂性。鉴于其更高的相关性,这些三维神经球是阐明神经发生、分化和神经病理机制的宝贵模型,有助于推进体外神经模型的发展并减少对动物模型的依赖。意义:本研究使用TMT 10联标记评估了十种蛋白质提取方案,以优化从单个神经球进行的蛋白质组学分析。它比较了成本、蛋白质产量以及检测差异表达蛋白质的能力,确定了SPEED和S-Trap等方法适用于高通量研究,而FASP在肽产量方面表现出色。TMT标记增强了蛋白质鉴定,特别是对于低丰度蛋白质,并允许预分级以最大化对有限样本的分析。然而,诸如有限的翻译后修饰分析和小蛋白质潜在损失等挑战凸显了根据特定研究目标选择方案的重要性。这项工作有助于优化体外神经模型的蛋白质组学工作流程,在最小程度依赖动物模型的情况下推进单细胞分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验