Wechkunanukul Napatsorn, Klomjit Kornuma, Kumtun Thawanrat, Jaikumpun Pongsiri, Kengtanyakich Santiphab, Katheng Awutsadaporn
Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand.
Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand.
Eur J Dent. 2025 Jul;19(3):697-703. doi: 10.1055/s-0044-1791965. Epub 2024 Dec 10.
This study compared the flexural strength, surface hardness, and surface roughness of conventional, milled, and three-dimensional (3D)-printed provisional restorations.
Bar-shaped polymethyl methacrylate (PMMA) specimens (25 × 2 × 2 mm) and disc-shaped specimens (9 × 2 mm) were fabricated using three different techniques ( = 10/group): conventional (SR Ivocron C&B, Ivoclar Vivadent, Schaan, Liechtenstein), milling (Aidite Temp PMMA Blocks, Aidite, Qinhuangdao, China), and 3D printing (Asiga DentaTOOTH, Asiga, Sydney, Australia). Flexural strength was evaluated using a universal testing machine until fracture occurred. Vickers hardness and surface roughness tests were performed on the disc-shaped specimens using a micro-Vickers hardness tester and atomic force microscopy, respectively.
Data were statistically analyzed using one-way ANOVA. The post hoc Tukey's honest significant difference was conducted to compare the differences value between groups ( < 0.05).
The milled computer-aided design/computer-aided manufacturing (CAD/CAM) provisional restorative material exhibited a significantly higher flexural strength (125.16 ± 6.83 MPa) compared with both the traditional (109.74 ± 14.14 MPa) and 3D-printed (71.09 ± 9.09 MPa) materials ( < 0.05). The conventional material had a higher Vickers hardness (19.27 ± 0.41 kgf/mm) compared with the milled (18.53 ± 0.32 kgf/mm) and 3D-printed (17.80 ± 1.85 kgf/mm) materials, though the difference was statistically significant only between the conventional and 3D-printed groups. The surface roughness of the milled CAD/CAM material (8.80 ± 2.70 nm) was significantly lower than that of the 3D-printed material (24.27 ± 9.82 nm) ( < 0.05).
The provisional restorations fabricated using milled PMMA technology provide adequate flexural strength, surface hardness, and low surface roughness, offering a viable alternative for creating provisional restorations.
本研究比较了传统、铣削和三维(3D)打印临时修复体的抗弯强度、表面硬度和表面粗糙度。
采用三种不同技术制作条形聚甲基丙烯酸甲酯(PMMA)试件(25×2×2mm)和盘形试件(9×2mm)(每组n = 10):传统方法(SR Ivocron C&B,义获嘉伟瓦登特公司,沙恩,列支敦士登)、铣削(爱迪特临时PMMA块,爱迪特公司,中国秦皇岛)和3D打印(Asiga DentaTOOTH,Asiga公司,悉尼,澳大利亚)。使用万能试验机评估抗弯强度直至发生断裂。分别使用显微维氏硬度计和原子力显微镜对盘形试件进行维氏硬度和表面粗糙度测试。
数据采用单因素方差分析进行统计学分析。采用事后检验的Tukey真实显著差异法比较组间差异值(P < 0.05)。
与传统材料(109.74±14.14MPa)和3D打印材料(71.09±9.09MPa)相比,铣削的计算机辅助设计/计算机辅助制造(CAD/CAM)临时修复材料表现出显著更高的抗弯强度(125.16±6.83MPa)(P < 0.05)。传统材料的维氏硬度(19.27±0.41kgf/mm²)高于铣削材料(18.53±0.32kgf/mm²)和3D打印材料(17.80±1.85kgf/mm²),不过仅传统组和3D打印组之间的差异具有统计学意义。铣削CAD/CAM材料的表面粗糙度(8.80±2.70nm)显著低于3D打印材料(24.27±9.82nm)(P < 0.05)。
采用铣削PMMA技术制作的临时修复体具有足够的抗弯强度、表面硬度和低表面粗糙度,为制作临时修复体提供了一种可行的替代方案。