Suppr超能文献

部花青克服结晶螺吡喃中空间位阻的超快特征。

Ultrafast signatures of merocyanine overcoming steric impedance in crystalline spiropyran.

作者信息

Siddiqui Khalid M, Bittmann Simon F, Hayes Stuart A, Krawczyk Kamil M, Sarracini Antoine, Corthey Gastón, Dsouza Raison, Miller R J Dwayne

机构信息

Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany.

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S3H6, Canada.

出版信息

Nat Commun. 2024 Dec 10;15(1):10659. doi: 10.1038/s41467-024-54992-7.

Abstract

Isomerisation through stereochemical changes and modulation in bond order conjugation are processes that occur ubiquitously in diverse chemical systems and for photochromic spirocompounds, it imparts them their functionality as phototransformable molecules. However, these transformations have been notoriously challenging to observe in crystals due to steric hindrance but are necessary ingredients for the development of reversible spiro-based crystalline devices. Here, we report the detection of spectroscopic signatures of merocyanine due to photoisomerisation within crystalline spiropyran following 266 nm excitation. Our femtosecond spectroscopy experiments reveal bond breaking, isomerisation and increase in bond order conjugation towards the formation of merocynine on a sub-2 ps time scale. They further unveil a lifetime of several picoseconds for the initial open ring intermediate with subsequent relaxation to mercocyanine, with established back connversion pathways, which make the system highly reversible in the solid state. Supporting femtosecond electron diffraction studies suggest that lattice strain favours the return of photoproduct to the closed spiroform. Our work thus paves the way for novel ultrafast applications from spiropyran-derived compounds.

摘要

通过立体化学变化实现的异构化以及键序共轭的调制是在各种化学体系中普遍存在的过程,对于光致变色螺环化合物而言,这些过程赋予了它们作为光可转化分子的功能。然而,由于空间位阻,在晶体中观察到这些转变极具挑战性,但它们是基于螺环的可逆晶体器件发展的必要因素。在此,我们报告了在266 nm激发后,由于晶体螺吡喃内的光异构化而检测到部花青的光谱特征。我们的飞秒光谱实验揭示了在亚2皮秒时间尺度上,键断裂、异构化以及键序共轭增加以形成部花青的过程。实验进一步揭示了初始开环中间体具有数皮秒的寿命,随后弛豫为部花青,并建立了反向转化途径,这使得该体系在固态下具有高度可逆性。支持性的飞秒电子衍射研究表明,晶格应变有利于光产物回到封闭的螺环形式。因此,我们的工作为基于螺吡喃衍生化合物的新型超快应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd50/11632083/3433a0bb8f58/41467_2024_54992_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验