Ünal Suay Yağmur, Namdar Pekiner Filiz
Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, Marmara University, Başıbüyük, Başıbüyük Başıbüyük Yolu Marmara Üniversitesi, Sağlık Yerleşkesi 9/3, 34854, Maltepe, Istanbul, Turkey.
Oral Radiol. 2025 Apr;41(2):222-230. doi: 10.1007/s11282-024-00793-z. Epub 2024 Dec 11.
The mandibular canal (MC) houses the inferior alveolar nerve. Extraction of the mandibular third molar (MM3) is a common dental surgery, often complicated by nerve damage. CBCT is the most effective imaging method to assess the relationship between MM3 and MC. With advancements in artificial intelligence, deep learning has shown promising results in dentistry. The aim of this study is to evaluate the MC-MM3 relationship using CBCT and a deep learning technique, as well as to automatically segment the mandibular impacted third molar, mandibular canal, mental and mandibular foramen.
This retrospective study analyzed CBCT data from 300 patients. Segmentation was used for labeling, dividing the data into training (n = 270) and test (n = 30) sets. The nnU-NetV2 architecture was employed to develop an optimal deep learning model. The model's success was validated using the test set, with metrics including accuracy, sensitivity, precision, Dice score, Jaccard index, and AUC.
For the MM3 annotated on CBCT, the accuracy was 0.99, sensitivity 0.90, precision 0.85, Dice score 0.85, Jaccard index 0.78, AUC value 0.95. In MC evaluation, accuracy was 0.99, sensitivity 0.75, precision 0.78, Dice score 0.76, Jaccard index 0.62, AUC value 0.88. For the evaluation of mental foramen; accuracy 0.99, sensitivity 0.64, precision 0.66, Dice score 0.64, Jaccard index 0.57, AUC value 0.82. In the evaluation of mandibular foramen, accuracy was found to be 0.99, sensitivity 0.79, precision 0.68, Dice score 0.71, and AUC value 0.90. Evaluating the MM3-MC relationship, the model showed an 80% correlation with observer assessments.
The nnU-NetV2 deep learning architecture reliably identifies the MC-MM3 relationship in CBCT images, aiding in diagnosis, surgical planning, and complication prediction.
下颌管容纳下牙槽神经。下颌第三磨牙拔除是常见的牙科手术,常因神经损伤而复杂化。CBCT是评估下颌第三磨牙与下颌管关系的最有效成像方法。随着人工智能的发展,深度学习在牙科领域已显示出有前景的结果。本研究的目的是使用CBCT和深度学习技术评估下颌管与下颌第三磨牙的关系,并自动分割下颌阻生第三磨牙、下颌管、颏孔和下颌孔。
这项回顾性研究分析了300例患者的CBCT数据。采用分割进行标注,将数据分为训练集(n = 270)和测试集(n = 30)。采用nnU-NetV2架构开发最佳深度学习模型。使用测试集验证模型的成功率,指标包括准确率、灵敏度、精确率、Dice分数、Jaccard指数和AUC。
对于CBCT上标注的下颌第三磨牙,准确率为0.99,灵敏度为0.90,精确率为0.85,Dice分数为0.85,Jaccard指数为0.78,AUC值为0.95。在下颌管评估中,准确率为0.99,灵敏度为0.75,精确率为0.78,Dice分数为0.76,Jaccard指数为0.62,AUC值为0.88。对于颏孔评估,准确率为0.99,灵敏度为0.64,精确率为0.66,Dice分数为0.64,Jaccard指数为0.57,AUC值为0.82。在下颌孔评估中,发现准确率为0.99,灵敏度为0.79,精确率为0.68,Dice分数为0.71,AUC值为0.90。评估下颌第三磨牙与下颌管的关系时,该模型与观察者评估显示出80%的相关性。
nnU-NetV2深度学习架构能可靠地识别CBCT图像中的下颌管与下颌第三磨牙的关系,有助于诊断、手术规划和并发症预测。