Suppr超能文献

采用混合响应面法-人工神经网络-遗传算法(RSM-ANN-GA)优化超声波辅助从[具体来源未给出]中提取总黄酮,并评估其抗氧化活性。

Optimization of ultrasonic-assisted extraction of total flavonoids from by a hybrid response surface methodology-artificial neural network-genetic algorithm (RSM-ANN-GA) approach, coupled with an assessment of antioxidant activities.

作者信息

Jiang Deng-Zhao, Yu Dan-Ping, Zeng Ming, Liu Wen-Bo, Li Dong-Lin, Liu Ke-Yue

机构信息

School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China

Jiujiang Key Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Northwest Jiangxi Jiujiang 332005 China.

出版信息

RSC Adv. 2024 Dec 10;14(52):39069-39080. doi: 10.1039/d4ra05077k. eCollection 2024 Dec 3.

Abstract

The objective of this research endeavor is to refine the ultrasonic-assisted extraction technique for total flavonoids from (TFO), utilizing a synergistic approach combining response surface methodology (RSM) and artificial neural network integrated with genetic algorithm (RSM-ANN-GA). The optimized extraction parameters determined through RSM yielded a TFO concentration of 13.538 mg g under the following conditions: an ethanol concentration of 61.95%, a liquid-solid ratio of 41.06 mL g, an ultrasonic power setting of 351.57 W, and an ultrasonic exposure duration of 58.95 minutes. Conversely, the RSM-ANN-GA approach identified an even more refined set of conditions, achieving a TFO concentration of 13.7844 mg g, with an ethanol concentration of 58.93%, a liquid-solid ratio of 41.16 mL g, an ultrasonic power of 350.22 W, and an ultrasonic exposure time of 58.18 minutes. These findings underscore the superior predictive accuracy and enhanced extraction efficiency offered by the RSM-ANN-GA model over the conventional RSM method. Furthermore, the study demonstrated that TFO possesses a potent antioxidant effect, as evidenced by its ability to scavenge DPPH, hydroxyl, and superoxide anion free radicals , highlighting its potential as a valuable source of natural antioxidants.

摘要

本研究的目的是利用响应面法(RSM)和结合遗传算法的人工神经网络(RSM-ANN-GA)的协同方法,优化从[具体植物名称未给出]中提取总黄酮(TFO)的超声辅助提取技术。通过RSM确定的优化提取参数在以下条件下产生了13.538 mg/g的TFO浓度:乙醇浓度为61.95%,液固比为41.06 mL/g,超声功率设置为351.57 W,超声暴露时间为58.95分钟。相反,RSM-ANN-GA方法确定了一组更精细的条件,实现了13.7844 mg/g的TFO浓度,乙醇浓度为58.93%,液固比为41.16 mL/g,超声功率为350.22 W,超声暴露时间为58.18分钟。这些发现强调了RSM-ANN-GA模型相对于传统RSM方法具有更高的预测准确性和更高的提取效率。此外,该研究表明TFO具有强大的抗氧化作用,这通过其清除DPPH、羟基和超氧阴离子自由基的能力得到证明,突出了其作为天然抗氧化剂宝贵来源的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ed1/11629873/9b565360af3f/d4ra05077k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验