Suppr超能文献

N1神经氨酸酶双突变体G147R/H274Y对奥司他韦敏感性影响的分子动力学研究

Molecular dynamics study on the effect of the N1 neuraminidase double mutant G147R/H274Y on oseltamivir sensitivity.

作者信息

Nurrohman Ardiana Ilham, Suwito Hery, Puspaningsih Ni Nyoman Tri, Haq Kautsar Ul

机构信息

Bioinformatics Research Group, University-CoE-Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga Surabaya 60115 Indonesia.

Proteomic Laboratory, University-CoE-Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga Surabaya 60115 Indonesia.

出版信息

RSC Adv. 2024 Dec 10;14(52):39017-39026. doi: 10.1039/d4ra07713j. eCollection 2024 Dec 3.

Abstract

Inhibition of neuraminidase is the most prominent target in influenza medication using oseltamivir as an inhibitor. However, the emerging resistance of neuraminidase toward oseltamivir due to mutation reduces the efficacy of oseltamivir. The generally reported mutation is a single mutation at H274Y, which declines the sensitivity of oseltamivir by almost 900 folds compared to the wild-type variant. Moreover, an additional mutation at G147R increases the resistance by more than 2000 folds. However, sufficient studies on the resistance mechanism of this variant have not yet been reported. Therefore, we simulated four neuraminidase proteins comprising wild-type (WT), G147R, H274Y, and G147R/H274Y using molecular dynamics simulation to disclose the binding mechanism of oseltamivir. Trajectory analysis was conducted to reveal structural stability and flexibility. Furthermore, end-point free binding energy calculations were conducted. The energy decomposition of each residue was also calculated. The end-point energy calculation showed a similar result to that of experimental data. The energy decomposition analysis revealed that G147R/H274Y showed significant reduction in oseltamivir (OST) interaction with R118. Salt-bridge disruption caused by R224-E276 was also observed. Modification to enhance the polarity of the inhibitor might be useful in overcoming these changes. However, it should be noted that such changes could worsen the pharmacokinetic property of the inhibitor. It is hoped that these findings will provide useful insights for the development of an anti-influenza drug that can withstand the mutant variant.

摘要

抑制神经氨酸酶是使用奥司他韦作为抑制剂的流感药物治疗中最突出的靶点。然而,由于突变导致神经氨酸酶对奥司他韦产生新出现的耐药性,降低了奥司他韦的疗效。普遍报道的突变是H274Y处的单突变,与野生型变体相比,奥司他韦的敏感性降低了近900倍。此外,G147R处的额外突变使耐药性增加了2000多倍。然而,关于这种变体耐药机制的充分研究尚未见报道。因此,我们使用分子动力学模拟对包含野生型(WT)、G147R、H274Y和G147R/H274Y的四种神经氨酸酶蛋白进行了模拟,以揭示奥司他韦的结合机制。进行轨迹分析以揭示结构稳定性和灵活性。此外,进行了终点自由结合能计算。还计算了每个残基的能量分解。终点能量计算结果与实验数据相似。能量分解分析表明,G147R/H274Y显示奥司他韦(OST)与R118的相互作用显著降低。还观察到由R224 - E276引起的盐桥破坏。增强抑制剂极性的修饰可能有助于克服这些变化。然而,应该注意的是,这种变化可能会恶化抑制剂的药代动力学性质。希望这些发现将为开发能够抵抗突变变体的抗流感药物提供有用的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058b/11629752/8081038482a2/d4ra07713j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验