Suppr超能文献

基于脂质组学结合粒子群优化-反向传播神经网络的盐池滩羊鉴别

The authentication of Yanchi tan lamb based on lipidomic combined with particle swarm optimization-back propagation neural network.

作者信息

Yang Qi, Zhang Dequan, Liu Chongxin, Xu Le, Li Shaobo, Zheng Xiaochun, Chen Li

机构信息

Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.

出版信息

Food Chem X. 2024 Nov 22;24:102031. doi: 10.1016/j.fochx.2024.102031. eCollection 2024 Dec 30.

Abstract

This study successfully combined widely targeted lipidomic with a back propagation (BP) neural network optimized based on a particle swarm algorithm to identify the authenticity of Yanchi Tan lamb. An electronic nose and gas chromatography-olfactometry-mass spectrometry (GC-O-MS) were used to explore the flavor differences in Tan lamb from various regions. Among the 17 identified volatile compounds, 16 showed significant regional differences ( < 0.05). Lipidomic identified 1080 molecules across 41 lipid classes, with 11 lipids, including Carnitine 15:0, Carnitine 17:1, and Carnitine C8:1-OH, serving as potential markers for Yanchi Tan lamb. In addition, a stepwise linear discriminant model and three types of BP neural networks were used to identify the origin of Tan lamb. The results showed that particle swarm optimization-back propagation (PSO-BP) neural network had the best prediction effect, with 100 % prediction accuracy in both the training and test sets. The established PSO-BP model was able to achieve effective discrimination between Yanchi and non-Yanchi Tan lamb. These results provide a comprehensive perspective on the discrimination of Yanchi Tan lambs and improve the understanding of Tan lamb flavor and lipid composition in relation to origin.

摘要

本研究成功地将广泛靶向脂质组学与基于粒子群算法优化的反向传播(BP)神经网络相结合,以鉴定盐池滩羊的真伪。使用电子鼻和气相色谱 - 嗅觉 - 质谱联用仪(GC - O - MS)探究不同地区滩羊的风味差异。在鉴定出的17种挥发性化合物中,16种表现出显著的区域差异(P < 0.05)。脂质组学鉴定出了41类脂质中的1080个分子,其中11种脂质,包括肉碱15:0、肉碱17:1和肉碱C8:1 - OH,可作为盐池滩羊的潜在标志物。此外,还使用逐步线性判别模型和三种类型的BP神经网络来鉴定滩羊的产地。结果表明,粒子群优化 - 反向传播(PSO - BP)神经网络具有最佳的预测效果,在训练集和测试集中的预测准确率均为100%。所建立的PSO - BP模型能够有效区分盐池滩羊和非盐池滩羊。这些结果为盐池滩羊的鉴别提供了全面的视角,并增进了对滩羊风味和脂质组成与产地关系的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d5/11629254/14e6beca0f79/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验