Suppr超能文献

非小细胞肺癌术后肺部感染的危险因素:基于回归的列线图预测模型

Risk factors for postoperative pulmonary infections in non-small cell lung cancer: a regression-based nomogram prediction model.

作者信息

Zhang Chao, Fu Yongxing, Chen Qiangjun, Liu Ruofan

机构信息

Department of Pediatrics, Qilu Hospital of Shandong University Jinan 250012, Shandong, China.

Department of Respiratory and Critical Care Medicine, Yidu Central Hospital of Weifang Weifang 262500, Shangdong, China.

出版信息

Am J Cancer Res. 2024 Nov 15;14(11):5365-5377. doi: 10.62347/BIBD8425. eCollection 2024.

Abstract

OBJECTIVE

To identify key risk factors for postoperative pulmonary infections (PPIs) in lung cancer (LC), patients undergoing radical surgery and construct a multiparametric nomogram model to improve PPI risk prediction accuracy, guiding individualized interventions.

METHODS

A retrospective analysis was conducted on LC patients treated at Yidu Central Hospital of Weifang from March 2020 to May 2023. Among the 1,084 LC cases reviewed, patients were divided into an infected group (n = 131) and an uninfected group (n = 953) based on infection status. Key factors for PPIs were screened using machine learning techniques, including least absolute shrinkage and selection operator (LASSO) regression, Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). A nomogram prediction model was developed, and its stability and clinical utility were evaluated using calibration curves and decision curve analysis, with internal validation through random case selection.

RESULTS

Thirteen factors - including tumor stage, diabetes history, chronic obstructive pulmonary disease (COPD), operation duration, mechanical ventilation duration, age, C-reactive protein, procalcitonin, high-mobility group box 1, interleukin-6, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and systemic immune-inflammation index - were identified as significantly associated with PPIs. The nomogram model demonstrated high predictive accuracy in internal validation (C-index = 0.935), strong calibration, and substantial clinical benefit. For two randomly selected cases, the model predicted a 63% infection probability for the infected patient and a 32% probability for the uninfected patient, affirming the model's predictive effectiveness.

CONCLUSIONS

The multiparametric nomogram model developed in this study provides a reliable method for PPI risk prediction in LC patients, supporting clinical decision-making and improving postoperative management.

摘要

目的

识别肺癌(LC)行根治性手术患者术后肺部感染(PPI)的关键危险因素,并构建多参数列线图模型以提高PPI风险预测准确性,指导个体化干预。

方法

对2020年3月至2023年5月在潍坊益都中心医院接受治疗的LC患者进行回顾性分析。在1084例回顾的LC病例中,根据感染状态将患者分为感染组(n = 131)和未感染组(n = 953)。采用机器学习技术筛选PPI的关键因素,包括最小绝对收缩和选择算子(LASSO)回归、支持向量机(SVM)和极端梯度提升(XGBoost)。建立列线图预测模型,并使用校准曲线和决策曲线分析评估其稳定性和临床实用性,通过随机病例选择进行内部验证。

结果

包括肿瘤分期、糖尿病史、慢性阻塞性肺疾病(COPD)、手术时长、机械通气时长、年龄、C反应蛋白、降钙素原、高迁移率族蛋白B1、白细胞介素-6、中性粒细胞与淋巴细胞比值、血小板与淋巴细胞比值和全身免疫炎症指数在内的13个因素被确定与PPI显著相关。列线图模型在内部验证中显示出高预测准确性(C指数 = 0.935)、强校准性和显著的临床益处。对于随机选择的两个病例,该模型预测感染患者的感染概率为63%,未感染患者的感染概率为32%,证实了该模型的预测有效性。

结论

本研究开发的多参数列线图模型为LC患者的PPI风险预测提供了一种可靠的方法,支持临床决策并改善术后管理。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验