Suppr超能文献

A maximum-entropy length-orientation closure for short-fiber reinforced composites.

作者信息

Mehta Alok, Schneider Matti

机构信息

Institute of Engineering Mathematics, University of Duisburg-Essen, Essen, Germany.

Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany.

出版信息

Comput Mech. 2024;74(3):615-640. doi: 10.1007/s00466-024-02447-7. Epub 2024 Feb 24.

Abstract

We describe an algorithm for generating fiber-filled volume elements for use in computational homogenization schemes which accounts for a coupling of the fiber-length and the fiber-orientation. For prescribed fiber-length distribution and fiber-orientation tensor of second order, a maximum-entropy estimate is used to produce a fiber-length-orientation distribution which mimics real injection molded specimens, where longer fibers show a stronger alignment than shorter fibers. We derive the length-orientation closure from scratch, discuss its integration into the sequential addition and migration algorithm for generating fiber-filled microstructures for industrial volume fractions and investigate the resulting effective elastic properties. We demonstrate that accounting for the length-orientation coupling permits to match the measured Young's moduli in principal fiber direction and transverse to it more accurately than for closure approximations ignoring the length-orientation coupling.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbbc/11628595/a6b620781537/466_2024_2447_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验