Suppr超能文献

用于接受β-内酰胺类抗生素治疗的住院患者凝血功能障碍风险的机器学习模型

Machine learning models for coagulation dysfunction risk in inpatients administered β-lactam antibiotics.

作者信息

Hua Yuqing, Li Na, Lao Jiahui, Chen Zhaoyang, Ma Shiyu, Li Xiao

机构信息

Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.

Department of Clinical Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China.

出版信息

Front Pharmacol. 2024 Nov 26;15:1503713. doi: 10.3389/fphar.2024.1503713. eCollection 2024.

Abstract

The β-Lactam antibiotics represent a widely used class of antibiotics, yet the latent and often overlooked risk of coagulation dysfunction associated with their use underscores the need for proactive assessment. Machine learning methodologies can offer valuable insights into evaluating the risk of coagulation dysfunction associated with β-lactam antibiotics. This study aims to identify the risk factors associated with coagulation dysfunction related to β-lactam antibiotics and to develop machine learning models for estimating the risk of coagulation dysfunction with real-world data. A retrospective study was performed using machine learning modeling analysis on electronic health record data, employing five distinct machine learning methods. The study focused on adult inpatients discharged from 1 January 2018, to 31 December 2021, at the First Affiliated Hospital of Shandong First Medical University. The models were developed for estimating the risk of coagulation dysfunction associated with various β-lactam antibiotics based on electronic health record feasibility. The dataset was divided into training and test sets to assess model performance using metrics such as total accuracy and area under the curve. The study encompassed risk-factor analysis and machine learning model development for coagulation dysfunction in inpatients administered different β-lactam antibiotics. A total of 45,179 participants were included in the study. The incidence of coagulation disorders related to cefazolin sodium, cefoperazone/sulbactam sodium, cefminol sodium, amoxicillin/sulbactam sodium, and piperacillin/tazobactam sodium was 2.4%, 5.4%, 1.5%, 5.5%, and 4.8%, respectively. Machine learning models for estimating coagulation dysfunction associated with each β-lactam antibiotic underwent validation with 5-fold cross-validation and test sets. On the test set, the optimal models for cefazolin sodium, cefoperazone/sulbactam sodium, cefminol sodium, amoxicillin/sulbactam sodium, and piperacillin/tazobactam sodium yielded AUC values of 0.798, 0.768, 0.919, 0.783, and 0.867, respectively. The study findings suggest that machine learning classifiers can serve as valuable tools for identifying patients at risk of coagulation dysfunction associated with β-lactam antibiotics and intervening based on high-risk predictions. Enhanced access to administrative and clinical data could further enhance the predictive performance of machine learning models, thereby expanding pharmacovigilance efforts.

摘要

β-内酰胺类抗生素是一类广泛使用的抗生素,然而与其使用相关的潜在且常被忽视的凝血功能障碍风险凸显了进行主动评估的必要性。机器学习方法可为评估与β-内酰胺类抗生素相关的凝血功能障碍风险提供有价值的见解。本研究旨在确定与β-内酰胺类抗生素相关的凝血功能障碍的危险因素,并利用真实世界数据开发用于估计凝血功能障碍风险的机器学习模型。使用机器学习建模分析对电子健康记录数据进行了一项回顾性研究,采用了五种不同的机器学习方法。该研究聚焦于2018年1月1日至2021年12月31日从山东第一医科大学第一附属医院出院的成年住院患者。基于电子健康记录的可行性,开发了用于估计与各种β-内酰胺类抗生素相关的凝血功能障碍风险的模型。将数据集分为训练集和测试集,使用总准确率和曲线下面积等指标评估模型性能。该研究涵盖了对接受不同β-内酰胺类抗生素治疗的住院患者凝血功能障碍的危险因素分析和机器学习模型开发。共有45179名参与者纳入研究。与头孢唑林钠、头孢哌酮/舒巴坦钠、头孢米诺钠、阿莫西林/舒巴坦钠和哌拉西林/他唑巴坦钠相关的凝血障碍发生率分别为2.4%、5.4%、1.5%、5.5%和4.8%。用于估计与每种β-内酰胺类抗生素相关的凝血功能障碍的机器学习模型通过5折交叉验证和测试集进行了验证。在测试集上,头孢唑林钠、头孢哌酮/舒巴坦钠、头孢米诺钠、阿莫西林/舒巴坦钠和哌拉西林/他唑巴坦钠的最佳模型的曲线下面积值分别为0.798、0.768、0.919、0.783和0.867。研究结果表明,机器学习分类器可作为识别有β-内酰胺类抗生素相关凝血功能障碍风险患者并基于高风险预测进行干预的有价值工具。增加行政和临床数据的获取可进一步提高机器学习模型的预测性能,从而扩大药物警戒工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64f9/11628276/0f00f5ff0b35/fphar-15-1503713-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验