Suppr超能文献

公众对算法决策者和人类决策者表现的态度。

Public attitudes on performance for algorithmic and human decision-makers.

作者信息

Bansak Kirk, Paulson Elisabeth

机构信息

Department of Political Science, University of California, 210 Social Sciences Building, Berkeley, CA 94720, USA.

Technology and Operations Management Unit, Harvard Business School, Soldiers Field, Boston, MA 02163, USA.

出版信息

PNAS Nexus. 2024 Dec 10;3(12):pgae520. doi: 10.1093/pnasnexus/pgae520. eCollection 2024 Dec.

Abstract

This study explores public preferences for algorithmic and human decision-makers (DMs) in high-stakes contexts, how these preferences are shaped by performance metrics, and whether public evaluations of performance differ depending on the type of DM. Leveraging a conjoint experimental design, approximately respondents chose between pairs of DM profiles in two high-stakes scenarios: pretrial release decisions and bank loan approvals. The profiles varied by type (human vs. algorithm) and three metrics-defendant crime rate/loan default rate, false positive rate (FPR) among white defendants/applicants, and FPR among minority defendants/applicants-as well as an implicit fairness metric defined by the absolute difference between the two FPRs. The results show that efficiency was the most important performance metric in the respondents' evaluation of DMs, while fairness was the least prioritized. This finding is robust across both scenarios, key subgroups of respondents (e.g. by race and political party), and across the DM type under evaluation. Additionally, even when controlling for performance, we find an average preference for human DMs over algorithmic ones, though this preference varied significantly across respondents. Overall, these findings show that while respondents differ in their preferences over DM type, they are generally consistent in the performance metrics they desire.

摘要

本研究探讨了在高风险情境下公众对算法决策者和人类决策者的偏好,这些偏好如何受到绩效指标的影响,以及公众对绩效的评估是否因决策者类型而异。利用联合实验设计,约[具体数量]名受访者在两种高风险情境下的决策者简介对中进行选择:审前释放决策和银行贷款审批。这些简介在类型(人类与算法)、三个指标(被告犯罪率/贷款违约率、白人被告/申请人中的误报率、少数族裔被告/申请人中的误报率)以及由两个误报率之间的绝对差异定义的隐含公平指标方面有所不同。结果表明,效率是受访者评估决策者时最重要的绩效指标,而公平则最不被优先考虑。这一发现在所研究的两种情境、关键受访者子群体(如按种族和政党划分)以及所评估的决策者类型中均具有稳健性。此外,即使在控制绩效的情况下,我们发现受访者总体上更倾向于人类决策者而非算法决策者,不过这种偏好因受访者而异。总体而言,这些发现表明,虽然受访者对决策者类型的偏好存在差异,但他们在期望的绩效指标方面总体上是一致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8a4/11631221/f28364819fce/pgae520f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验