Suppr超能文献

Ni(II)-Dithiocarbamate and -diphosphine coordination complexes as pre-catalysts for electrochemical OER activity.

作者信息

Pal Sarvesh Kumar, Ansari Toufik, Yadav Chote Lal, Singh Nanhai, Lama Prem, Indra Arindam, Kumar Kamlesh

机构信息

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India.

Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India.

出版信息

Dalton Trans. 2025 Jan 21;54(4):1597-1609. doi: 10.1039/d4dt02447h.

Abstract

Electrochemical water oxidation holds immense potential for sustainable energy generation, splitting water into clean-burning hydrogen and life-giving oxygen. However, a key roadblock lies in the sluggish nature of the oxygen evolution reaction (OER). Finding stable, cost-effective, and environmentally friendly catalysts with high OER efficiency is crucial to unlock this technology's full potential. Here, we have synthesized four new cationic heteroleptic Ni(II) complexes having the formula [Ni(S^S)(P^P)]PF (1-4) where S^S represents bidentate dithiocarbamate ligands (,-bis(benzyl)dithiocarbamate and -benzyl--3-picolyldithiocarbamate) and P^P represents diphosphine ligands (1,2-bis(diphenylphosphino)ethane (dppe) and 1,1-bis(diphenylphosphino)ferrocene (dppf)). The complexes were characterized by UV-Vis, FT-IR, and multinuclear NMR spectroscopic techniques. Single crystal X-ray structures of all complexes are also reported. The molecular structures showed a distorted square planar geometry around the Ni(II) center defined by a bidentate S^S dithiolate chelating ligand and a P^P diphosphine chelating ligand. Interestingly, the complexes exhibit weak non-covalent interactions, contributing to the overall supramolecular structures. The role of complexes in water oxidation has been investigated electrochemically in a 1.0 M KOH solution after immobilization onto the surface of activated carbon cloth (CC). Detailed analyses revealed that the complexes are promising precatalysts for generating active Ni(OH)/NiO(OH) as a true oxygen evolution reaction (OER) catalyst at CC upon anodic activation. Notably, the catalyst derived from complex 4@CC exhibited the highest OER activity with a Tafel slope of 93 mV per decade and reaching a current density of 10 mA cm at a low overpotential of 250 mV in a 1.0 M KOH solution. This study reveals the significance of dithiocarbamate and diphosphine ligands in facilitating the conversion of Ni(II) complexes into highly active OER catalysts.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验