Suppr超能文献

用于生物液滴阵列实时选择性并行操控的智能光电润湿数字微流控系统。

Intelligent optoelectrowetting digital microfluidic system for real-time selective parallel manipulation of biological droplet arrays.

作者信息

Wang Tianyi, Zhou Shizheng, Liu Xuekai, Zeng Jianghao, He Xiaohan, Yu Zhihang, Liu Zhiyuan, Liu Xiaomei, Jin Jing, Zhu Yonggang, Shi Liuyong, Yan Hong, Zhou Teng

机构信息

School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, Hainan, China.

School of Information and Communication Engineering, Hainan University, Haikou 570228, Hainan, China.

出版信息

Lab Chip. 2025 Mar 11;25(6):1416-1428. doi: 10.1039/d4lc00804a.

Abstract

Optoelectrowetting technology generates virtual electrodes to manipulate droplets by projecting optical patterns onto the photoconductive layer. This method avoids the complex design of the physical circuitry of dielectricwetting chips, compensating for the inability to reconstruct the electrode. However, the current technology relies on operators to manually position the droplets, draw optical patterns, and preset the droplet movement paths. It lacks real-time feedback on droplet information and the ability for independent droplet control, which can lead to droplet miscontrol and contamination. This paper presents a combination of optoelectrowetting with deep learning algorithms, integrating software and a photoelectric detection platform, and develops an optoelectrowetting intelligent control system. First, a target detection algorithm identifies droplet characteristics in real-time and automatically generate virtual electrodes to control movement. Simultaneously, a tracking algorithm outputs trajectories and ID information for efficient droplet arrays tracking. The results show that the system can automatically control the movement and fusion of multiple droplets in parallel and realize the automatic arrangement and storage of disordered droplet arrays without any additional electrodes and sensing devices. Additionally, through the automated control of the system, the cell suspension can be precisely cultured in the specified medium according to experimental requirements, and the growth trend is consistent with that observed in the well plate, significantly enhancing the experiment's flexibility and accuracy. In this paper, we propose an intelligent method applicable to the automated manipulation of discrete droplets. This method would play a crucial role in advancing the applications of digital microfluidic technology in biomedicine and other fields.

摘要

光电润湿技术通过将光学图案投射到光电导层上来生成虚拟电极以操纵液滴。这种方法避免了介电润湿芯片物理电路的复杂设计,弥补了无法重构电极的不足。然而,当前技术依赖操作人员手动定位液滴、绘制光学图案并预设液滴移动路径。它缺乏对液滴信息的实时反馈以及独立控制液滴的能力,这可能导致液滴控制失误和污染。本文提出将光电润湿与深度学习算法相结合,集成软件和光电检测平台,开发一种光电润湿智能控制系统。首先,目标检测算法实时识别液滴特征并自动生成虚拟电极以控制其移动。同时,跟踪算法输出轨迹和ID信息以实现对液滴阵列的高效跟踪。结果表明,该系统能够自动并行控制多个液滴的移动和融合,无需任何额外电极和传感装置即可实现对无序液滴阵列的自动排列和存储。此外,通过系统的自动控制,可根据实验要求将细胞悬液精确培养在指定培养基中,其生长趋势与在孔板中观察到的一致,显著提高了实验的灵活性和准确性。在本文中,我们提出了一种适用于离散液滴自动操纵的智能方法。该方法将在推动数字微流控技术在生物医学等领域的应用中发挥关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验