Huang Zhiwei, Zhang Tong, Feng Jing, Wang Yage
Mechanical and Electrical Engineering College, Guangdong University of Science and Technology, Dongguan 523668, China.
Micromachines (Basel). 2025 May 20;16(5):596. doi: 10.3390/mi16050596.
In practical dielectrophoretic cell interaction experiments, cells do not always exhibit circular or rod-like shapes, making the study of dielectrophoretic interactions among irregularly shaped particles of significant importance. We established a mathematical model for curved particles to analyze their mutual dielectrophoretic interactions, incorporating particle deformability by varying their shear modulus, and employed the arbitrary Lagrangian-Eulerian method to describe particle motion and deformation. The results demonstrate that under the influence of a direct current electric field, curved particles undergo rotation, deformation, and mutual attraction due to dielectrophoresis, eventually forming a stable alignment parallel to the applied electric field. Adjusting the electric field strength effectively modulates the interaction intensity and movement velocity between particles. This study elucidates the fundamental principles governing dielectrophoretic interactions among deformable curved particles in DC electric fields, providing theoretical guidance for dielectrophoretic manipulation experiments involving biological cells, metallic particles, and other entities under DC electric fields.
在实际的介电泳细胞相互作用实验中,细胞并不总是呈现圆形或棒状形状,因此研究形状不规则的颗粒之间的介电泳相互作用具有重要意义。我们建立了一个针对弯曲颗粒的数学模型,通过改变剪切模量纳入颗粒的可变形性,以分析它们之间的相互介电泳相互作用,并采用任意拉格朗日 - 欧拉方法来描述颗粒的运动和变形。结果表明,在直流电场的影响下,弯曲颗粒会因介电泳而发生旋转、变形和相互吸引,最终形成与外加电场平行的稳定排列。调整电场强度可有效调节颗粒之间的相互作用强度和运动速度。本研究阐明了直流电场中可变形弯曲颗粒之间介电泳相互作用的基本原理,为直流电场下涉及生物细胞、金属颗粒及其他实体的介电泳操纵实验提供了理论指导。