Piochon Claire, Titley Heather K, Simmons Dana H, Grasselli Giorgio, Elgersma Ype, Hansel Christian
Department of Neurobiology, University of Chicago, Chicago, IL 60637.
Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13221-13226. doi: 10.1073/pnas.1613897113. Epub 2016 Oct 31.
At glutamatergic synapses, both long-term potentiation (LTP) and long-term depression (LTD) can be induced at the same synaptic activation frequency. Instructive signals determine whether LTP or LTD is induced, by modulating local calcium transients. Synapses maintain the ability to potentiate or depress over a wide frequency range, but it remains unknown how calcium-controlled plasticity operates when frequency variations alone cause differences in calcium amplitudes. We addressed this problem at cerebellar parallel fiber-Purkinje cell synapses, which can undergo LTD or LTP in response to 1-Hz and 100-Hz stimulation. We observed that high-frequency activation elicits larger spine calcium transients than low-frequency stimulation under all stimulus conditions, but, regardless of activation frequency, climbing fiber (CF) coactivation provides an instructive signal that further enhances calcium transients and promotes LTD. At both frequencies, buffering calcium prevents LTD induction and LTP results instead, identifying the enhanced calcium signal amplitude as the critical parameter contributed by the instructive CF signal. These observations show that it is not absolute calcium amplitudes that determine whether LTD or LTP is evoked but, instead, the LTD threshold slides, thus preserving the requirement for relatively larger calcium transients for LTD than for LTP induction at any given stimulus frequency. Cerebellar LTD depends on the activation of calcium/calmodulin-dependent kinase II (CaMKII). Using genetically modified (TT305/6VA and T305D) mice, we identified α-CaMKII inhibition upon autophosphorylation at Thr305/306 as a molecular event underlying the threshold shift. This mechanism enables frequency-independent plasticity control by the instructive CF signal based on relative, not absolute, calcium thresholds.
在谷氨酸能突触中,长期增强(LTP)和长期抑制(LTD)可在相同的突触激活频率下诱导产生。指导性信号通过调节局部钙瞬变来决定是诱导LTP还是LTD。突触在很宽的频率范围内都保持着增强或抑制的能力,但当仅频率变化导致钙幅度不同时,钙控制的可塑性是如何运作的仍不清楚。我们在小脑平行纤维-浦肯野细胞突触处解决了这个问题,该突触可响应1赫兹和100赫兹刺激而发生LTD或LTP。我们观察到,在所有刺激条件下,高频激活比低频刺激引发更大的棘突钙瞬变,但是,无论激活频率如何,攀缘纤维(CF)共激活都会提供一个指导性信号,进一步增强钙瞬变并促进LTD。在这两个频率下,缓冲钙可阻止LTD的诱导,反而导致LTP产生,这表明增强的钙信号幅度是指导性CF信号贡献的关键参数。这些观察结果表明,决定诱发LTD还是LTP的不是绝对钙幅度,而是LTD阈值滑动,因此在任何给定刺激频率下,与LTP诱导相比,LTD仍需要相对更大的钙瞬变。小脑LTD依赖于钙/钙调蛋白依赖性激酶II(CaMKII)的激活。使用基因改造(TT305/6VA和T305D)小鼠,我们确定在苏氨酸305/306处自磷酸化后α-CaMKII的抑制是阈值 shift 的分子事件。这种机制使指导性CF信号能够基于相对而非绝对的钙阈值进行频率独立的可塑性控制。