Zheng Jiashuo, Conrad Marcus
Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany.
Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany.
Physiol Rev. 2025 Apr 1;105(2):651-706. doi: 10.1152/physrev.00031.2024. Epub 2024 Dec 11.
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione -transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
我们在此全面更新铁死亡领域的最新进展,特别强调其代谢基础和生理影响。在简要介绍有助于将铁死亡概念塑造为一种独特细胞死亡形式的标志性研究后,我们批判性地评估了参与其调控的关键代谢决定因素。这些因素包括必需微量元素如硒和铁的代谢;氨基酸如半胱氨酸、蛋氨酸、谷氨酰胺/谷氨酸和色氨酸的代谢;以及碳水化合物代谢,涵盖糖酵解、柠檬酸循环、电子传递链和磷酸戊糖途径。我们还深入探讨了甲羟戊酸途径及随后的胆固醇生物合成,包括中间代谢产物如二甲基烯丙基焦磷酸、角鲨烯、辅酶Q(CoQ)、维生素K和7-脱氢胆固醇,以及脂肪酸和磷脂代谢,包括酯和醚磷脂的生物合成与重塑以及脂质过氧化。接下来,我们重点介绍主要的铁死亡监测系统,特别是半胱氨酸/谷胱甘肽/谷胱甘肽过氧化物酶4轴、NAD(P)H/铁死亡抑制蛋白1/CoQ/维生素K系统和鸟苷三磷酸环化水解酶1/四氢生物蝶呤/二氢叶酸还原酶轴。我们还讨论了其他潜在的抗铁死亡和促铁死亡系统,包括谷胱甘肽-S-转移酶P1、过氧化物酶体增殖物激活受体6、二氢乳清酸脱氢酶、甘油-3-磷酸脱氢酶2、维生素K环氧化物还原酶复合体亚基1样1、一氧化氮和酰基辅酶A合成酶长链家族成员4。最后,我们探讨铁死亡在衰老、肿瘤抑制和感染控制中的生理作用,其在组织缺血再灌注损伤和神经退行性变中的病理意义,以及其在癌症治疗中的潜在治疗应用。列举了可能在体内调节铁死亡的现有药物和化合物。