Elena-Real Carlos A, Urbanek Annika, Sagar Amin, Mohanty Priyesh, Levy Geraldine, Morató Anna, Fournet Aurélie, Allemand Frédéric, Sibille Nathalie, Mittal Jeetain, Sinnaeve Davy, Bernadó Pau
Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France.
Artie McFerrin Department of Chemical Engineering, Texas A&M, College Station, TX 77843, USA.
Chemistry. 2025 Jan 27;31(6):e202403718. doi: 10.1002/chem.202403718. Epub 2024 Dec 30.
The incorporation of fluorinated amino acids into proteins provides new opportunities to study biomolecular structure-function relationships in an elegant manner. The available strategies to incorporate the majority of fluorinated amino acids are not site-specific or imply important structural modifications. Here, we present a chemical biology approach for the site-specific incorporation of three commercially available C-modified fluoroprolines that has been validated using a non-pathogenic version of huntingtin exon-1 (HttExon-1). F, H and N NMR chemical shifts measured for multiple variants of HttExon-1 indicated that the trans/cis ratio was strongly dependent on the fluoroproline variant and the sequence context. By isotopically labelling the rest of the protein, we have shown that the extent of spectroscopic perturbations to the neighbouring residues depends on the number of fluorine atoms and the stereochemistry at C, as well as the isomeric form of the fluoroproline. We have rationalized these observations by means of extensive molecular dynamics simulations, indicating that the observed atomic chemical shift perturbations correlate with the distance to fluorine atoms and that the effect remains very local. These results validate the site-specific incorporation of fluoroprolines as an excellent strategy to monitor intra- and intermolecular interactions in disordered proline-rich proteins.
将氟化氨基酸掺入蛋白质中为以一种优雅的方式研究生物分子结构-功能关系提供了新的机会。掺入大多数氟化氨基酸的现有策略不是位点特异性的,或者意味着重要的结构修饰。在这里,我们提出了一种化学生物学方法,用于位点特异性掺入三种市售的C修饰氟代脯氨酸,该方法已使用亨廷顿蛋白外显子1(HttExon-1)的非致病版本进行了验证。对HttExon-1的多个变体测量的F、H和N NMR化学位移表明,反式/顺式比率强烈依赖于氟代脯氨酸变体和序列背景。通过对蛋白质的其余部分进行同位素标记,我们表明对相邻残基的光谱扰动程度取决于氟原子的数量、C处的立体化学以及氟代脯氨酸的异构体形式。我们通过广泛的分子动力学模拟对这些观察结果进行了合理化分析,表明观察到的原子化学位移扰动与到氟原子的距离相关,并且这种效应仍然非常局部。这些结果验证了氟代脯氨酸的位点特异性掺入是监测富含脯氨酸的无序蛋白质中分子内和分子间相互作用的一种出色策略。