Suppr超能文献

个人光照暴露测量与干预的功效分析

Power analysis for personal light exposure measurements and interventions.

作者信息

Zauner Johannes, Udovicic Ljiljana, Spitschan Manuel

机构信息

Department Health and Sports Sciences, Technical University of Munich, TUM School of Medicine and Health, Chronobiology & Health, Munich, Germany.

Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany.

出版信息

PLoS One. 2024 Dec 11;19(12):e0308768. doi: 10.1371/journal.pone.0308768. eCollection 2024.

Abstract

BACKGROUND

Light exposure regulates the human circadian system and more widely affects health, well-being, and performance. With the rise in field studies on light exposure's effects, the amount of data collected through wearable loggers and dosimeters has also grown. These data are more complex than stationary laboratory measurements. Determining sample sizes in field studies is challenging, as the literature shows a wide range of sample sizes (between 2 and 1,887 from a recent review of the field and approaching 105 participants in first studies using large-scale 'biobank' databases). Current decisions on sample size for light exposure data collection lack a specific basis rooted in power analysis. Therefore, there is a need for clear guidance on selecting sample sizes.

METHODS

Here, we introduce a novel procedure based on hierarchical bootstrapping for calculating statistical power and required sample size for wearable light and optical radiation logging data and derived summary metrics, taking into account the hierarchical data structure (mixed-effects model) through stepwise resampling. Alongside this method, we publish a dataset that serves as one possible basis to perform these calculations: one week of continuous data in winter and summer, respectively, for 13 early-day shift-work participants (collected in Dortmund, Germany; lat. 51.514° N, lon. 7.468° E).

RESULTS

Applying our method on the dataset for twelve different summary metrics (luminous exposure, geometric mean, and standard deviation, timing/time above/below threshold, mean/midpoint of darkest/brightest hours, intradaily variability) with a target comparison across winter and summer, reveals required sample sizes ranging from as few as 3 to more than 50. About half of the metrics-those that focus on the bright time of day-showed sufficient power already with the smallest sample. In contrast, metrics centered around the dark time of the day and daily patterns required higher sample sizes: mean timing of light below mel EDI of 10 lux (5), intradaily variability (17), mean of darkest 5 hours (24), and mean timing of light above mel EDI of 250 lux (45). The geometric standard deviation and the midpoint of the darkest 5 hours lacked sufficient power within the tested sample size.

CONCLUSIONS

Our novel method provides an effective technique for estimating sample size in light exposure studies. It is specific to the used light exposure or dosimetry metric and the effect size inherent in the light exposure data at the basis of the bootstrap. Notably, the method goes beyond typical implementations of bootstrapping to appropriately address the structure of the data. It can be applied to other datasets, enabling comparisons across scenarios beyond seasonal differences and activity patterns. With an ever-growing pool of data from the emerging literature, the utility of this method will increase and provide a solid statistical basis for the selection of sample sizes.

摘要

背景

光照调节人体昼夜节律系统,并更广泛地影响健康、幸福感和工作表现。随着关于光照影响的现场研究不断增加,通过可穿戴记录器和剂量计收集的数据量也在增长。这些数据比固定实验室测量的数据更为复杂。在现场研究中确定样本量具有挑战性,因为文献显示样本量范围很广(根据最近对该领域的综述,样本量在2至1887之间,而在首次使用大规模“生物银行”数据库的研究中接近105名参与者)。目前关于光照数据收集样本量的决策缺乏基于功效分析的具体依据。因此,需要关于选择样本量的明确指导。

方法

在此,我们引入一种基于分层自抽样的新程序,用于计算可穿戴光和光辐射记录数据以及派生汇总指标的统计功效和所需样本量,通过逐步重抽样考虑分层数据结构(混合效应模型)。除了这种方法,我们还发布了一个数据集,作为进行这些计算的一个可能基础:分别为13名早班轮班工作参与者在冬季和夏季的一周连续数据(在德国多特蒙德收集;北纬51.514°,东经7.468°)。

结果

将我们的方法应用于该数据集的十二个不同汇总指标(光暴露、几何平均值和标准差、高于/低于阈值的时间/时刻、最暗/最亮小时的平均值/中点、日内变异性),并进行冬季和夏季的目标比较,结果显示所需样本量少至3个,多至50多个。大约一半的指标——那些关注白天明亮时段的指标——在样本量最小时就已显示出足够的功效。相比之下,围绕白天黑暗时段和日常模式的指标需要更大的样本量:低于10勒克斯等效昼夜抑制(mel EDI)的光的平均时刻(5个)、日内变异性(17个)、最暗5小时的平均值(24个)以及高于250勒克斯mel EDI的光的平均时刻(45个)。几何标准差和最暗5小时的中点在测试样本量范围内缺乏足够的功效。

结论

我们的新方法为估计光照研究中的样本量提供了一种有效技术。它特定于所使用的光照或剂量测定指标以及自抽样基础上光照数据中固有的效应大小。值得注意的是,该方法超越了典型的自抽样实现方式,以适当处理数据结构。它可应用于其他数据集,能够跨季节差异和活动模式之外的场景进行比较。随着新兴文献中数据量的不断增加,这种方法的实用性将提高,并为样本量的选择提供坚实的统计基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb63/11633969/65990bd9f665/pone.0308768.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验