Suppr超能文献

LightLogR:个人光照暴露数据的可重复分析

LightLogR: Reproducible analysis of personal light exposure data.

作者信息

Zauner Johannes, Hartmeyer Steffen, Spitschan Manuel

机构信息

Technical University of Munich, TUM School of Medicine and Health, Department Health and Sport Sciences, Chronobiology & Health, Munich, Germany.

Max Planck Institute for Biological Cybernetics, Max Planck Research Group Translational Sensory & Circadian Neuroscience, Tübingen, Germany.

出版信息

J Open Source Softw. 2025 Mar 13;10(107):7601. doi: 10.21105/joss.07601.

Abstract

Light plays an important role in human health and well-being, which necessitates the study of the effects of personal light exposure in real-world settings, measured by means of wearable devices. A growing number of studies incorporate these kinds of data to assess associations between light and health outcomes. Yet with few or missing standards, guidelines, and frameworks, it is challenging setting up measurements, analysing the data, and comparing outcomes between studies. Overall, time series data from wearable light loggers are significantly more complex compared to controlled stimuli used in laboratory studies. In this paper, we introduce LightLogR, a novel resource to facilitate these research efforts. The package for R statistical software is open-source and permissively MIT-licenced. As part of a developing software ecosystem, LightLogR is built with common challenges of current and future datasets in mind. The package standardises many tasks for importing and processing personal light exposure data. It allows for quick as well as detailed insights into the datasets through summary and visualisation tools. Furthermore, LightLogR incorporates major metrics commonly used in the field (61 metrics across 17 metric families), all while embracing an inherently hierarchical, participant-based data structure.

摘要

光线对人类健康和福祉起着重要作用,这就需要研究在现实环境中通过可穿戴设备测量的个人光线暴露的影响。越来越多的研究纳入这类数据,以评估光线与健康结果之间的关联。然而,由于标准、指南和框架很少或缺失,建立测量方法、分析数据以及比较不同研究的结果具有挑战性。总体而言,与实验室研究中使用的受控刺激相比,可穿戴光线记录器的时间序列数据要复杂得多。在本文中,我们介绍了LightLogR,这是一种有助于这些研究工作的新颖资源。用于R统计软件的软件包是开源的,并遵循宽松的麻省理工学院许可协议。作为一个不断发展的软件生态系统的一部分,LightLogR在设计时考虑到了当前和未来数据集的常见挑战。该软件包对导入和处理个人光线暴露数据的许多任务进行了标准化。它允许通过汇总和可视化工具对数据集进行快速以及详细的洞察。此外,LightLogR纳入了该领域常用的主要指标(涵盖17个指标类别,共61个指标),同时采用了一种本质上基于参与者的分层数据结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c3a/7617517/284ef3ac3d9a/EMS203894-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验