Zhang Yang, Savvidou Maria, Liaudanskaya Volha, Singh Pramesh, Fu Yuhang, Nasreen Amreen, Coe Marly, Kelly Marilyn, Snapper Dustin, Wagner Chelsea, Gill Jessica, Symes Aviva, Patra Abani, Kaplan David L, Beheshti Afshin, Georgakoudi Irene
Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA.
Sci Adv. 2024 Dec 13;10(50):eadp1980. doi: 10.1126/sciadv.adp1980. Epub 2024 Dec 11.
Neuron-glial cell interactions following traumatic brain injury (TBI) determine the propagation of damage and long-term neurodegeneration. Spatiotemporally heterogeneous cytosolic and mitochondrial metabolic pathways are involved, leading to challenges in developing effective diagnostics and treatments. An engineered three-dimensional brain tissue model comprising human neurons, astrocytes, and microglia is used in combination with label-free, two-photon imaging and microRNA studies to characterize metabolic interactions between glial and neuronal cells over 72 hours following impact injury. We interpret multiparametric, quantitative, optical metabolic assessments in the context of microRNA gene set analysis and identify distinct metabolic changes in neurons and glial cells. Glycolysis, nicotinamide adenine dinucleotide phosphate (reduced form) and glutathione synthesis, fatty acid synthesis, and oxidation are mobilized within glial cells to mitigate the impacts of initial enhancements in oxidative phosphorylation and fatty acid oxidation within neurons, which lack robust antioxidant defenses. This platform enables enhanced understanding of mechanisms that may be targeted to improve TBI diagnosis and treatment.
创伤性脑损伤(TBI)后神经元与神经胶质细胞的相互作用决定了损伤的扩散和长期神经退行性变。时空异质性的细胞溶质和线粒体代谢途径参与其中,这给开发有效的诊断和治疗方法带来了挑战。一种由人类神经元、星形胶质细胞和小胶质细胞组成的工程化三维脑组织模型,与无标记双光子成像和微小RNA研究相结合,用于表征冲击伤后72小时内神经胶质细胞和神经元细胞之间的代谢相互作用。我们在微小RNA基因集分析的背景下解释多参数、定量的光学代谢评估,并确定神经元和神经胶质细胞中不同的代谢变化。神经胶质细胞内的糖酵解、烟酰胺腺嘌呤二核苷酸磷酸(还原型)和谷胱甘肽合成、脂肪酸合成及氧化被调动起来,以减轻神经元内氧化磷酸化和脂肪酸氧化最初增强所带来的影响,因为神经元缺乏强大的抗氧化防御能力。该平台有助于增强对可能作为改善TBI诊断和治疗靶点的机制的理解。