Suppr超能文献

挖掘谷歌上排名靠前的非广告减肥网站:一种数据挖掘方法。

Uncovering the Top Nonadvertising Weight Loss Websites on Google: A Data-Mining Approach.

作者信息

Almenara Carlos A, Gulec Hayriye

机构信息

School of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru.

Interdisciplinary Research Team on Internet and Society, Faculty of Social Studies, Masaryk University, Brno, Czech Republic.

出版信息

JMIR Infodemiology. 2024 Dec 11;4:e51701. doi: 10.2196/51701.

Abstract

BACKGROUND

Online weight loss information is commonly sought by internet users, and it may impact their health decisions and behaviors. Previous studies examined a limited number of Google search queries and relied on manual approaches to retrieve online weight loss websites.

OBJECTIVE

This study aimed to identify and describe the characteristics of the top weight loss websites on Google.

METHODS

This study gathered 432 Google search queries collected from Google autocomplete suggestions, "People Also Ask" featured questions, and Google Trends data. A data-mining software tool was developed to retrieve the search results automatically, setting English and the United States as the default criteria for language and location, respectively. Domain classification and evaluation technologies were used to categorize the websites according to their content and determine their risk of cyberattack. In addition, the top 5 most frequent websites in nonadvertising (ie, nonsponsored) search results were inspected for quality.

RESULTS

The results revealed that the top 5 nonadvertising websites were healthline.com, webmd.com, verywellfit.com, mayoclinic.org, and womenshealthmag.com. All provided accuracy statements and author credentials. The domain categorization taxonomy yielded a total of 101 unique categories. After grouping the websites that appeared less than 5 times, the most frequent categories involved "Health" (104/623, 16.69%), "Personal Pages and Blogs" (91/623, 14.61%), "Nutrition and Diet" (48/623, 7.7%), and "Exercise" (34/623, 5.46%). The risk of being a victim of a cyberattack was low.

CONCLUSIONS

The findings suggested that while quality information is accessible, users may still encounter less reliable content among various online resources. Therefore, better tools and methods are needed to guide users toward trustworthy weight loss information.

摘要

背景

互联网用户经常搜索在线减肥信息,这可能会影响他们的健康决策和行为。以往的研究只考察了有限数量的谷歌搜索查询,并依靠人工方法来检索在线减肥网站。

目的

本研究旨在识别和描述谷歌上排名靠前的减肥网站的特征。

方法

本研究收集了从谷歌自动完成建议、“人们也问”特色问题和谷歌趋势数据中获取的432个谷歌搜索查询。开发了一种数据挖掘软件工具来自动检索搜索结果,分别将英语和美国设置为语言和位置的默认标准。使用域名分类和评估技术根据网站内容对网站进行分类,并确定其遭受网络攻击的风险。此外,还检查了非广告(即非赞助)搜索结果中最常出现的前5个网站的质量。

结果

结果显示,排名前5的非广告网站分别是healthline.com、webmd.com、verywellfit.com、mayoclinic.org和womenshealthmag.com。所有网站都提供了准确性声明和作者资质。域名分类法总共产生了101个独特的类别。在将出现次数少于5次的网站分组后,最常见的类别包括“健康”(104/623,16.69%)、“个人页面和博客”(91/623,14.61%)、“营养与饮食”(48/623,7.7%)和“运动”(34/623,5.46%)。遭受网络攻击的风险较低。

结论

研究结果表明,虽然可以获取高质量的信息,但用户在各种在线资源中仍可能遇到不太可靠的内容。因此,需要更好的工具和方法来引导用户获取可靠的减肥信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9591/11669867/bbbefdf0a294/infodemiology_v4i1e51701_fig1.jpg

相似文献

9
Quality of information regarding abnormal uterine bleeding available online.网上有关异常子宫出血信息的质量。
Eur J Obstet Gynecol Reprod Biol. 2023 Mar;282:83-88. doi: 10.1016/j.ejogrb.2023.01.020. Epub 2023 Jan 20.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验