Soncini Debora, Becherini Pamela, Ladisa Francesco, Ravera Silvia, Chedere Adithya, Gelli Elisa, Giorgetti Giulia, Martinuzzi Claudia, Piacente Francesco, Mastracci Luca, Veneziano Claudia, Santamaria Gianluca, Monacelli Fiammetta, Ghanem Moustafa S, Cagnetta Antonia, Guolo Fabio, Garibotto Matteo, Aquino Sara, Passalaqua Mario, Bruzzone Santina, Bellotti Axel, Duchosal Michel A, Nahimana Aimable, Angelucci Emanuele, Nagasuma Chandra, Nencioni Alessio, Lemoli Roberto Massimo, Cea Michele
IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
Clinic of Hematology, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.
Blood Adv. 2025 Mar 11;9(5):1024-1039. doi: 10.1182/bloodadvances.2024013425.
Elevated levels of the NAD+-generating enzyme nicotinamide phosphoribosyltransferase (NAMPT) are a common feature across numerous cancer types. Accordingly, we previously reported pervasive NAD+ dysregulation in multiple myeloma (MM) cells in association with upregulated NAMPT expression. Unfortunately, albeit being effective in preclinical models of cancer, NAMPT inhibition has proven ineffective in clinical trials because of the existence of alternative NAD+ production routes using NAD+ precursors other than nicotinamide. Here, by leveraging mathematical modeling approaches integrated with transcriptome data, we defined the specific NAD+ landscape of MM cells and established that the Preiss-Handler pathway for NAD+ biosynthesis, which uses nicotinic acid as a precursor, supports NAD+ synthesis in MM cells via its key enzyme nicotinate phosphoribosyltransferase (NAPRT). Accordingly, we found that NAPRT confers resistance to NAD+-depleting agents. Transcriptomic, metabolic, and bioenergetic profiling of NAPRT-knockout (KO) MM cells showed these to have weakened endogenous antioxidant defenses, increased propensity to oxidative stress, and enhanced genomic instability. Concomitant NAMPT inhibition further compounded the effects of NAPRT-KO, effectively sensitizing MM cells to the chemotherapeutic drug, melphalan; NAPRT added-back fully rescues these phenotypes. Overall, our results propose comprehensive NAD+ biosynthesis inhibition, through simultaneously targeting NAMPT and NAPRT, as a promising strategy to be tested in randomized clinical trials involving transplant-eligible patients with MM, especially those with more aggressive disease.
烟酰胺磷酸核糖转移酶(NAMPT)水平升高是多种癌症类型的共同特征。因此,我们之前报道过多发性骨髓瘤(MM)细胞中普遍存在NAD+失调,且与NAMPT表达上调有关。遗憾的是,尽管NAMPT抑制在癌症临床前模型中有效,但由于存在使用除烟酰胺以外的NAD+前体的替代NAD+产生途径,NAMPT抑制在临床试验中已被证明无效。在此,通过利用与转录组数据相结合的数学建模方法,我们定义了MM细胞的特定NAD+格局,并确定了以烟酸为前体的NAD+生物合成的普赖斯-汉德勒途径,通过其关键酶烟酸磷酸核糖转移酶(NAPRT)支持MM细胞中的NAD+合成。因此,我们发现NAPRT赋予了对NAD+消耗剂的抗性。对NAPRT基因敲除(KO)的MM细胞进行转录组、代谢和生物能量分析表明,这些细胞的内源性抗氧化防御减弱,氧化应激倾向增加,基因组不稳定性增强。同时抑制NAMPT进一步加剧了NAPRT-KO的影响,有效地使MM细胞对化疗药物美法仑敏感;重新添加NAPRT可完全挽救这些表型。总体而言,我们的结果提出,通过同时靶向NAMPT和NAPRT来全面抑制NAD+生物合成,是一种有前景的策略,有待在涉及适合移植的MM患者,尤其是那些疾病更具侵袭性的患者的随机临床试验中进行测试。