Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland.
Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland.
Cell Death Dis. 2022 Apr 8;13(4):320. doi: 10.1038/s41419-022-04763-3.
Most cancer cells have high need for nicotinamide adenine dinucleotide (NAD) to sustain their survival. This led to the development of inhibitors of nicotinamide (NAM) phosphoribosyltransferase (NAMPT), the rate-limiting NAD biosynthesis enzyme from NAM. Such inhibitors kill cancer cells in preclinical studies but failed in clinical ones. To identify parameters that could negatively affect the therapeutic efficacy of NAMPT inhibitors and propose therapeutic strategies to circumvent such failure, we performed metabolomics analyses in tumor environment and explored the effect of the interaction between microbiota and cancer cells. Here we show that tumor environment enriched in vitamin B3 (NAM) or nicotinic acid (NA) significantly lowers the anti-tumor efficacy of APO866, a prototypic NAMPT inhibitor. Additionally, bacteria (from the gut, or in the medium) can convert NAM into NA and thus fuel an alternative NAD synthesis pathway through NA. This leads to the rescue from NAD depletion, prevents reactive oxygen species production, preserves mitochondrial integrity, blunts ATP depletion, and protects cancer cells from death.Our data in an in vivo preclinical model reveal that antibiotic therapy down-modulating gut microbiota can restore the anti-cancer efficacy of APO866. Alternatively, NAphosphoribosyltransferase inhibition may restore anti-cancer activity of NAMPT inhibitors in the presence of gut microbiota and of NAM in the diet.
大多数癌细胞对烟酰胺腺嘌呤二核苷酸(NAD)有很高的需求,以维持其生存。这导致了烟酰胺(NAM)磷酸核糖转移酶(NAMPT)抑制剂的开发,NAMPT 是从 NAM 合成 NAD 的限速酶。在临床前研究中,这些抑制剂能杀死癌细胞,但在临床试验中却失败了。为了确定可能对 NAMPT 抑制剂的治疗效果产生负面影响的参数,并提出克服这种失败的治疗策略,我们在肿瘤环境中进行了代谢组学分析,并探索了微生物群和癌细胞之间相互作用的影响。在这里,我们表明富含维生素 B3(NAM)或烟酸(NA)的肿瘤环境会显著降低 APO866 的抗肿瘤疗效,APO866 是一种典型的 NAMPT 抑制剂。此外,细菌(来自肠道或培养基)可以将 NAM 转化为 NA,从而通过 NA 为替代 NAD 合成途径提供燃料。这导致 NAD 耗竭的挽救、活性氧的产生减少、线粒体完整性的保留、ATP 耗竭的减轻以及癌细胞免受死亡的保护。我们在体内临床前模型中的数据表明,抗生素治疗可以下调肠道微生物群,从而恢复 APO866 的抗癌疗效。或者,在存在肠道微生物群和饮食中的 NAM 的情况下,抑制 NA 磷酸核糖转移酶可能会恢复 NAMPT 抑制剂的抗癌活性。