Suppr超能文献

基于具有伽马混合潜在嵌入的变分自编码器的深度聚类分析。

Deep clustering analysis via variational autoencoder with Gamma mixture latent embeddings.

作者信息

Guo Jiaxun, Fan Wentao, Amayri Manar, Bouguila Nizar

机构信息

CIISE, Concordia University, Montreal, H3G 1T7, QC, Canada.

Guangdong Provincial Key Laboratory IRADS and Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China.

出版信息

Neural Netw. 2025 Mar;183:106979. doi: 10.1016/j.neunet.2024.106979. Epub 2024 Dec 4.

Abstract

This article proposes a novel deep clustering model based on the variational autoencoder (VAE), named GamMM-VAE, which can learn latent representations of training data for clustering in an unsupervised manner. Most existing VAE-based deep clustering methods use the Gaussian mixture model (GMM) as a prior on the latent space. We employ a more flexible asymmetric Gamma mixture model to achieve higher quality embeddings of the data latent space. Second, since the Gamma is defined for strictly positive variables, in order to exploit the reparameterization trick of VAE, we propose a transformation method from Gaussian distribution to Gamma distribution. This method can also be considered a Gamma distribution reparameterization trick, allows gradients to be backpropagated through the sampling process in the VAE. Finally, we derive the evidence lower bound (ELBO) based on the Gamma mixture model in an effective way for the stochastic gradient variational Bayesian (SGVB) estimator to optimize the proposed model. ELBO, a variational inference objective, ensures the maximization of the approximation of the posterior distribution, while SGVB is a method used to perform efficient inference and learning in VAEs. We validate the effectiveness of our model through quantitative comparisons with other state-of-the-art deep clustering models on six benchmark datasets. Moreover, due to the generative nature of VAEs, the proposed model can generate highly realistic samples of specific classes without supervised information.

摘要

本文提出了一种基于变分自编码器(VAE)的新型深度聚类模型,名为GamMM-VAE,它可以以无监督的方式学习训练数据的潜在表示,用于聚类。大多数现有的基于VAE的深度聚类方法在潜在空间上使用高斯混合模型(GMM)作为先验。我们采用更灵活的不对称伽马混合模型,以实现数据潜在空间的更高质量嵌入。其次,由于伽马分布是为严格正变量定义的,为了利用VAE的重参数化技巧,我们提出了一种从高斯分布到伽马分布的变换方法。该方法也可视为伽马分布重参数化技巧,它允许梯度在VAE的采样过程中进行反向传播。最后,我们以一种有效的方式基于伽马混合模型推导证据下界(ELBO),用于随机梯度变分贝叶斯(SGVB)估计器来优化所提出的模型。ELBO是一个变分推断目标,可确保后验分布近似的最大化,而SGVB是一种用于在VAE中进行高效推断和学习的方法。我们通过与其他六个基准数据集上的最新深度聚类模型进行定量比较,验证了我们模型的有效性。此外,由于VAE的生成性质,所提出的模型可以在没有监督信息的情况下生成特定类别的高度逼真的样本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验