Suppr超能文献

变分推断与高斯混合模型和豪斯霍尔德流。

Variational inference with Gaussian mixture model and householder flow.

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, China.

School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, China.

出版信息

Neural Netw. 2019 Jan;109:43-55. doi: 10.1016/j.neunet.2018.10.002. Epub 2018 Oct 17.

Abstract

The variational auto-encoder (VAE) is a powerful and scalable deep generative model. Under the architecture of VAE, the choice of the approximate posterior distribution is one of the crucial issues, and it has a significant impact on tractability and flexibility of the VAE. Generally, latent variables are assumed to be normally distributed with a diagonal covariance matrix, however, it is not flexible enough to match the true complex posterior distribution. We introduce a novel approach to design a flexible and arbitrarily complex approximate posterior distribution. Unlike VAE, firstly, an initial density is constructed by a Gaussian mixture model, and each component has a diagonal covariance matrix. Then this relatively simple distribution is transformed into a more flexible one by applying a sequence of invertible Householder transformations until the desired complexity has been achieved. Additionally, we also give a detailed theoretical and geometric interpretation of Householder transformations. Lastly, due to this change of approximate posterior distribution, the Kullback-Leibler distance between two mixture densities is required to be calculated, but it has no closed form solution. Therefore, we redefine a new variational lower bound by virtue of its upper bound. Compared with other generative models based on similar VAE architecture, our method achieves new state-of-the-art results on benchmark datasets including MNIST, Fashion-MNIST, Omniglot and Histopathology data a more challenging medical images dataset, the experimental results show that our method can improve the flexibility of posterior distribution more effectively.

摘要

变分自编码器(VAE)是一种强大且可扩展的深度生成模型。在 VAE 的架构下,近似后验分布的选择是关键问题之一,它对 VAE 的可处理性和灵活性有重大影响。通常,假设潜在变量服从具有对角协方差矩阵的正态分布,但它对于匹配真实复杂后验分布的灵活性还不够。我们引入了一种设计灵活且任意复杂近似后验分布的新方法。与 VAE 不同,首先,通过高斯混合模型构建初始密度,每个分量具有对角协方差矩阵。然后,通过应用一系列可逆 Householder 变换将这个相对简单的分布转换为更灵活的分布,直到达到所需的复杂度。此外,我们还对 Householder 变换进行了详细的理论和几何解释。最后,由于近似后验分布的变化,需要计算两个混合密度之间的 Kullback-Leibler 距离,但它没有封闭形式的解。因此,我们通过其上界重新定义了一个新的变分下界。与基于类似 VAE 架构的其他生成模型相比,我们的方法在基准数据集(包括 MNIST、Fashion-MNIST、Omniglot 和 Histopathology 数据,这是一个更具挑战性的医学图像数据集)上取得了新的最先进的结果,实验结果表明,我们的方法可以更有效地提高后验分布的灵活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验