Suppr超能文献

用于长寿命可充电铝电池的硒掺杂碳包覆硒化铜蛋黄壳结构的构建

Construction of Se-doped carbon encapsulated CuSe yolk-shell structure for long-life rechargeable aluminum batteries.

作者信息

Li Gangyong, Li Siping, Li Zhi, Li Chen, Wang Zhaodi, Li Huan, Chen Rui, Zhou Miao, Zhang Bao, Hou Zhaohui

机构信息

Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.

Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.

出版信息

J Colloid Interface Sci. 2025 Mar 15;682:1062-1072. doi: 10.1016/j.jcis.2024.12.023. Epub 2024 Dec 6.

Abstract

Rechargeable aluminum batteries (RABs) are promising alternatives to lithium-ion batteries in large-scale energy storage applications owing to the abundance of their raw materials and high safety. However, achieving high energy density and long cycling life simultaneously holds great challenges for RABs, especially for high capacity transition metal selenide (TMS)-based positive materials suffering from structural collapse and dissolution in acidic ionic liquid electrolyte. Herein, Se-doped carbon encapsulated CuSe with yolk-shell structure (YS/Se-C@CuSe) is rationally constructed to address such issues. Electrochemical and spectroscopic analyses as well as density functional theory calculations show that the highly conductive Se-C shell enhances the electrochemical reaction kinetics of the electrode and provides strong adsorption for the soluble Cu and Se species. Benefiting from these merits, the optimal YS/Se-C@CuSe cathode manifests a high specific capacity of 1024.2 mAh/g at 0.2 A/g, a superior rate capability of 240.5 mAh/g at 3.2 A/g, and a long-term cycling stability over 2500 cycles. This work offers a feasible approach to the design and construction of low-cost and efficient TMS-based positive materials for realizing practically usable RABs.

摘要

可充电铝电池(RABs)因其原材料丰富且安全性高,在大规模储能应用中有望成为锂离子电池的替代品。然而,同时实现高能量密度和长循环寿命对RABs来说面临巨大挑战,特别是对于基于高容量过渡金属硒化物(TMS)的正极材料,它们在酸性离子液体电解质中会发生结构坍塌和溶解。在此,合理构建了具有蛋黄壳结构的硒掺杂碳包覆硒化铜(YS/Se-C@CuSe)来解决此类问题。电化学和光谱分析以及密度泛函理论计算表明,高导电性的Se-C壳增强了电极的电化学反应动力学,并对可溶性铜和硒物种提供了强吸附作用。受益于这些优点,最优的YS/Se-C@CuSe正极在0.2 A/g时表现出1024.2 mAh/g的高比容量,在3.2 A/g时具有240.5 mAh/g的优异倍率性能,以及超过2500次循环的长期循环稳定性。这项工作为设计和构建低成本、高效的基于TMS的正极材料以实现实际可用的RABs提供了一种可行的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验