Suppr超能文献

与单分子RNA成像相比,单细胞RNA测序算法低估了转录噪声的变化。

Single-cell RNA sequencing algorithms underestimate changes in transcriptional noise compared to single-molecule RNA imaging.

作者信息

Khetan Neha, Zuckerman Binyamin, Calia Giuliana P, Chen Xinyue, Garcia Arceo Ximena, Weinberger Leor S

机构信息

Gladstone|UCSF Center for Cell Circuitry, University of California, San Francisco, San Francisco, CA 94158, USA.

Gladstone|UCSF Center for Cell Circuitry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Evolvable Medicines, Oakland, CA, USA; Autonomous Therapeutics, Inc., Rockville, MD, USA.

出版信息

Cell Rep Methods. 2024 Dec 16;4(12):100933. doi: 10.1016/j.crmeth.2024.100933. Epub 2024 Dec 10.

Abstract

Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability. However, how best to quantify genome-wide noise remains unclear. Here, we utilize a small-molecule perturbation (5'-iodo-2'-deoxyuridine [IdU]) to amplify noise and assess noise quantification from numerous single-cell RNA sequencing (scRNA-seq) algorithms on human and mouse datasets and then compare it to noise quantification from single-molecule RNA fluorescence in situ hybridization (smFISH) for a panel of representative genes. We find that various scRNA-seq analyses report amplified noise-without altered mean expression levels-for ∼90% of genes and that smFISH analysis verifies noise amplification for the vast majority of tested genes. Collectively, the analyses suggest that most scRNA-seq algorithms (including a simple normalization approach) are appropriate for quantifying noise, although all algorithms appear to systematically underestimate noise changes compared to smFISH. For practical purposes, this analysis further argues that IdU noise enhancement is globally penetrant-i.e., homeostatically increasing noise without altering mean expression levels-and could enable investigations of the physiological impacts of transcriptional noise.

摘要

转录过程中的随机波动(噪声)会产生显著的细胞间变异性。然而,如何最好地量化全基因组噪声仍不清楚。在这里,我们利用小分子扰动(5'-碘-2'-脱氧尿苷 [IdU])来放大噪声,并评估众多单细胞RNA测序(scRNA-seq)算法对人类和小鼠数据集的噪声量化,然后将其与一组代表性基因的单分子RNA荧光原位杂交(smFISH)的噪声量化进行比较。我们发现,各种scRNA-seq分析报告了约90%的基因在平均表达水平未改变的情况下噪声放大,并且smFISH分析验证了绝大多数测试基因的噪声放大。总体而言,分析表明大多数scRNA-seq算法(包括一种简单的归一化方法)适用于量化噪声,尽管与smFISH相比,所有算法似乎都系统性地低估了噪声变化。出于实际目的,该分析进一步表明IdU噪声增强具有全局渗透性——即在不改变平均表达水平的情况下稳态增加噪声——并且可以用于研究转录噪声的生理影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0154/11704610/b061ee554973/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验