Wrobel Ellen C, de Lara Lucas Stori, de Fátima Ângelo, Oliveira Osvaldo N
Sao Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 São Carlos, SP, Brazil.
Department of Physics, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil.
Langmuir. 2024 Dec 24;40(51):27010-27027. doi: 10.1021/acs.langmuir.4c03948. Epub 2024 Dec 11.
The design of chemotherapeutic drug carriers requires precise information on their interaction with the plasma membrane since the carriers should be internalized by cells without disrupting or compromising the overall integrity of the membrane. In this study, we employ Langmuir monolayers mimicking the outer leaflet of plasma membranes of healthy and cancerous cells to determine the molecular-level interactions with a water-soluble calixarene derivative, -sulfonic acid calix[4]arene (SCX4), which is promising as drug carrier. The cancer membrane models comprised either 40% 1,2-dipalmitoyl--glycero-3-phosphocholine (DPPC) or 1,2-dioleoyl--glycero-3-phosphocholine (DOPC), 30% cholesterol (Chol), 20% 1,2-dipalmitoyl--glycero-3-phosphoethanolamine (DPPE), and 10% 1,2-dipalmitoyl--glycero-3-phospho-l-serine (DPPS). The healthy membrane models were composed of 60% DPPC or DOPC, 30% Chol, and 10% DPPE. SCX4 expanded the surface pressure isotherms and decreased compressional moduli in all membrane models, altering their morphologies as seen in Brewster angle microscopy images. A combination of polarization-modulated infrared reflection absorption spectroscopy and molecular dynamics simulations revealed that SCX4 interacts preferentially with lipid headgroups in cancer membrane models through electrostatic interactions with the amine groups of DPPS and DPPE. In healthy membrane models, SCX4 interacts mostly with cholesterol through van der Waals forces. Using a multidimensional projection technique to compare data from the distinct membrane models, we observed that SCX4 effects depend on membrane composition with no preference for cancer or healthy membrane models, which is consistent with its biocompatibility. Furthermore, the interactions and close location of SCX4 to the headgroups indicate that it does not compromise membrane integrity, confirming that SCX4 may be a suitable drug carrier.
化疗药物载体的设计需要精确了解其与质膜的相互作用,因为载体应被细胞内化,同时不破坏或损害膜的整体完整性。在本研究中,我们采用模拟健康细胞和癌细胞质膜外小叶的朗缪尔单分子层,以确定与一种有前景作为药物载体的水溶性杯芳烃衍生物——磺酸杯[4]芳烃(SCX4)的分子水平相互作用。癌症膜模型由40%的1,2 - 二棕榈酰 - sn - 甘油 - 3 - 磷酸胆碱(DPPC)或1,2 - 二油酰 - sn - 甘油 - 3 - 磷酸胆碱(DOPC)、30%的胆固醇(Chol)、20%的1,2 - 二棕榈酰 - sn - 甘油 - 3 - 磷酸乙醇胺(DPPE)和10%的1,2 - 二棕榈酰 - sn - 甘油 - 3 - 磷酸 - L - 丝氨酸(DPPS)组成。健康膜模型由60%的DPPC或DOPC、30%的Chol和10%的DPPE组成。SCX4使所有膜模型的表面压力等温线扩展并降低压缩模量,如在布鲁斯特角显微镜图像中所见,改变了它们的形态。偏振调制红外反射吸收光谱和分子动力学模拟相结合表明,SCX4在癌症膜模型中通过与DPPS和DPPE的胺基静电相互作用优先与脂质头部基团相互作用。在健康膜模型中,SCX4主要通过范德华力与胆固醇相互作用。使用多维投影技术比较来自不同膜模型的数据,我们观察到SCX4的作用取决于膜组成,对癌症或健康膜模型没有偏好,这与其生物相容性一致。此外,SCX4与头部基团的相互作用和紧密位置表明它不会损害膜的完整性,证实SCX4可能是一种合适的药物载体。