McGlothin Connor N, Whisnant Kody G, Turali Emre Emine Sumeyra, Owuor Dickson, Lu Jun, Xiao Xiongye, Vecchio Drew, Van Epps Scott, Bogdan Paul, Kotov Nicholas
Center of Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, USA.
Biointerfaces Institute, University of Michigan, Ann Arbor, 48109, USA.
Angew Chem Int Ed Engl. 2025 Feb 24;64(9):e202413444. doi: 10.1002/anie.202413444. Epub 2025 Jan 20.
Self-replication of bioorganic molecules and oil microdroplets have been explored as models in prebiotic chemistry. An analogous process for inorganic nanomaterials would involve the autocatalytic nucleation of metal, semiconductor, or ceramic nanoparticles-an area that remains largely uncharted. Demonstrating such systems would be both fundamentally intriguing and practically relevant, especially if the resulting particles self-assemble into complex structures beyond the capabilities of molecules or droplets. Here, we show that autocatalytic nucleation occurs with silver nanoparticles, which subsequently self-assemble into chains through spatially restricted attachment. In dispersions containing "hedgehog" particles, these reactions produce complex colloids with hierarchical spike organization. On solid surfaces, autocatalytic nucleation of nanoparticles yields conformal networks with hierarchical organization, including nanoparticle "colonies." We analyzed the complexity of both types of solid-stabilized particle assemblies via graph theory (GT). The complexity index of idealized spiky colloids is comparable to that of complex algal skeletons. The GT analysis of the percolating nanoparticle networks revealed their similarities to the bacterial, but not fungal, biofilms. We conclude that coupling autocatalytic nucleation with self-assembly enables the generation of complex, biosimilar particles and films. This work establishes mathematical and structural parallels between biotic and abiotic matter, integrating self-organization, autocatalytic nucleation, and theoretical description of complex systems. Utilization of quantitative descriptors of connectivity patterns opens possibility to GT-based biomimetic engineering of conductive coatings and other complex nanostructures.
生物有机分子和油微滴的自我复制已作为前生物化学中的模型进行了探索。无机纳米材料的类似过程将涉及金属、半导体或陶瓷纳米颗粒的自催化成核——这一领域在很大程度上仍未被探索。证明这样的系统在本质上既有趣又具有实际意义,特别是如果产生的颗粒自组装成超出分子或液滴能力的复杂结构。在这里,我们表明银纳米颗粒会发生自催化成核,随后通过空间受限的附着自组装成链。在含有“刺猬”颗粒的分散体中,这些反应产生具有分级尖峰结构的复杂胶体。在固体表面,纳米颗粒的自催化成核产生具有分级结构的共形网络,包括纳米颗粒“菌落”。我们通过图论(GT)分析了这两种类型的固体稳定颗粒组装体的复杂性。理想化的尖刺胶体的复杂性指数与复杂藻类骨架的相当。对渗流纳米颗粒网络的GT分析揭示了它们与细菌生物膜而非真菌生物膜的相似性。我们得出结论,将自催化成核与自组装相结合能够生成复杂的、类似生物的颗粒和薄膜。这项工作在生物物质和非生物物质之间建立了数学和结构上的相似性,整合了自组织、自催化成核以及复杂系统的理论描述。利用连接模式的定量描述符为基于GT的导电涂层和其他复杂纳米结构的仿生工程开辟了可能性。