Suppr超能文献

少问多学:通过对问答信息增益建模来调整生态瞬时评估调查长度

Ask Less, Learn More: Adapting Ecological Momentary Assessment Survey Length by Modeling Question-Answer Information Gain.

作者信息

Li Jixin, Ponnada Aditya, Wang Wei-Lin, Dunton Genevieve F, Intille Stephen S

机构信息

Northeastern University, USA.

University of Southern California, USA.

出版信息

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2024 Nov;8(4). doi: 10.1145/3699735. Epub 2024 Nov 21.

Abstract

Ecological momentary assessment (EMA) is an approach to collect self-reported data repeatedly on mobile devices in natural settings. EMAs allow for temporally dense, ecologically valid data collection, but frequent interruptions with lengthy surveys on mobile devices can burden users, impacting compliance and data quality. We propose a method that reduces the length of each EMA question set measuring interrelated constructs, with only modest information loss. By estimating the potential information gain of each EMA question using question-answer prediction models, this method can prioritize the presentation of the most informative question in a question-by-question sequence and skip uninformative questions. We evaluated the proposed method by simulating question omission using four real-world datasets from three different EMA studies. When compared against the random question omission approach that skips 50% of the questions, our method reduces imputation errors by 15%-52%. In surveys with five answer options for each question, our method can reduce the mean survey length by 34%-56% with a real-time prediction accuracy of 72%-95% for the skipped questions. The proposed method may either allow more constructs to be surveyed without adding user burden or reduce response burden for more sustainable longitudinal EMA data collection.

摘要

生态瞬时评估(EMA)是一种在自然环境中通过移动设备反复收集自我报告数据的方法。EMA能够进行时间密集型、生态有效型的数据收集,但移动设备上冗长的调查频繁打断用户,可能给用户带来负担,影响依从性和数据质量。我们提出了一种方法,该方法可以减少测量相关结构的每个EMA问题集的长度,且信息损失不大。通过使用问答预测模型估计每个EMA问题的潜在信息增益,此方法可以在逐个问题的序列中优先呈现信息最多的问题,并跳过无信息的问题。我们使用来自三项不同EMA研究的四个真实世界数据集模拟问题遗漏,对所提出的方法进行了评估。与随机跳过50%问题的问题遗漏方法相比,我们的方法将插补误差降低了15% - 52%。在每个问题有五个答案选项的调查中,我们的方法可以将平均调查长度减少34% - 56%,对于跳过问题的实时预测准确率为72% - 95%。所提出的方法要么可以在不增加用户负担的情况下调查更多结构,要么可以减轻应答负担,以实现更可持续的纵向EMA数据收集。

相似文献

本文引用的文献

4
Just-in-time adaptive ecological momentary assessment (JITA-EMA).即时自适应生态瞬时评估(JITA-EMA)。
Behav Res Methods. 2024 Feb;56(2):765-783. doi: 10.3758/s13428-023-02083-8. Epub 2023 Feb 25.
5
Evaluation of Pressing Issues in Ecological Momentary Assessment.评价生态瞬时评估中的紧迫问题。
Annu Rev Clin Psychol. 2023 May 9;19:107-131. doi: 10.1146/annurev-clinpsy-080921-083128. Epub 2022 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验