Wang Shirlene, Intille Stephen, Ponnada Aditya, Do Bridgette, Rothman Alexander, Dunton Genevieve
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States.
JMIR Res Protoc. 2022 Jul 14;11(7):e36666. doi: 10.2196/36666.
Young adulthood (ages 18-29 years) is marked by substantial weight gain, leading to increased lifetime risks of chronic diseases. Engaging in sufficient levels of physical activity and sleep, and limiting sedentary time are important contributors to the prevention of weight gain. Dual-process models of decision-making and behavior that delineate reflective (ie, deliberative, slow) and reactive (ie, automatic, fast) processes shed light on different mechanisms underlying the adoption versus maintenance of these energy-balance behaviors. However, reflective and reactive processes may unfold at different time scales and vary across people.
This paper describes the study design, recruitment, and data collection procedures for the Temporal Influences on Movement and Exercise (TIME) study, a 12-month intensive longitudinal data collection study to examine real-time microtemporal influences underlying the adoption and maintenance of physical activity, sedentary behavior, and sleep.
Intermittent ecological momentary assessment (eg, intentions, self-control) and continuous, sensor-based passive monitoring (eg, location, phone/app use, activity levels) occur using smartwatches and smartphones. Data analyses will combine idiographic (person-specific, data-driven) and nomothetic (generalizable, theory-driven) approaches to build models that may predict within-subject variation in the likelihood of behavior "episodes" (eg, ≥10 minutes of physical activity, ≥120 minutes of sedentary time, ≥7 hours sleep) and "lapses" (ie, not attaining recommended levels for ≥7 days) as a function of reflective and reactive factors.
The study recruited young adults across the United States (N=246). Rolling recruitment began in March 2020 and ended August 2021. Data collection will continue until August 2022.
Results from the TIME study will be used to build more predictive health behavior theories, and inform personalized behavior interventions to reduce obesity and improve public health.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/36666.
青年期(18 - 29岁)的特点是体重显著增加,导致慢性疾病的终生风险增加。进行足够量的体育活动和睡眠,并限制久坐时间,是预防体重增加的重要因素。决策和行为的双过程模型描述了反思性(即深思熟虑、缓慢)和反应性(即自动、快速)过程,揭示了这些能量平衡行为的采用与维持背后的不同机制。然而,反思性和反应性过程可能在不同的时间尺度上展开,且因人而异。
本文描述了“运动与锻炼的时间影响”(TIME)研究的研究设计、招募和数据收集程序,这是一项为期12个月的密集纵向数据收集研究,旨在研究体育活动、久坐行为和睡眠的采用与维持背后的实时微观时间影响。
使用智能手表和智能手机进行间歇性生态瞬时评估(如意图、自我控制)和基于传感器的连续被动监测(如位置、手机/应用程序使用、活动水平)。数据分析将结合个性化(针对个体、数据驱动)和通则化(可推广、理论驱动)方法来构建模型,这些模型可以预测行为“发作”(如≥10分钟的体育活动、≥120分钟的久坐时间、≥7小时睡眠)和“失误”(即连续≥7天未达到推荐水平)的个体内变化,作为反思性和反应性因素的函数。
该研究在美国招募了青年成年人(N = 246)。滚动招募于2020年3月开始,2021年8月结束。数据收集将持续到2022年8月。
TIME研究的结果将用于构建更具预测性的健康行为理论,并为减少肥胖和改善公众健康的个性化行为干预提供信息。
国际注册报告识别码(IRRID):DERR1 - 10.2196/36666