Kiosia Agklinta, Boylan Sally, Retford Matthew, Marques Larissa Pruner, Bueno Flávia Thedim Costa, Kirima Christine, Islam Md Saimul, Naheed Aliya, Wozencraft Anne
Health Data Research UK (HDR UK), HDR Global, London, United Kingdom.
Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom.
Front Public Health. 2024 Nov 27;12:1418382. doi: 10.3389/fpubh.2024.1418382. eCollection 2024.
Data science approaches have proved crucial for generating major insights to address public health challenges. While such approaches have played significant roles during the COVID-19 pandemic, there has been limited investment in capacity building in data science skills and infrastructure for health researchers in LMICs.
This review aims to identify current health data science capacity building initiatives and gaps in Africa, Asia, and Latin America and the Caribbean (LAC), to support knowledge sharing and collaborations, and inform future initiatives and associated investment.
We conducted a literature review using PubMed and Scopus, supplemented by a grey literature search on Google to identify relevant initiatives. Articles were screened based on inclusion criteria.
From 212 records, 85 met inclusion criteria, with 20 from PubMed and Scopus, and 65 from grey literature. The majority of programmes are tailored to specific disease areas, varying by region. Despite these efforts, there are limited initiatives with a clear, documented strategy on data science capacity building to accelerate global research insights, with the majority adopting a fragmented approach.
Despite the integration of data science approaches into health research initiatives in LMICs, there is a need for a standardised framework on data science capacity building to facilitate multidisciplinary and global collaboration. Structured approaches, inter-disciplinary, inter-regional connections and robust impact measurement will all be vital for advancing health research insights in these settings.
数据科学方法已被证明对于产生重大见解以应对公共卫生挑战至关重要。虽然这些方法在新冠疫情期间发挥了重要作用,但中低收入国家的卫生研究人员在数据科学技能和基础设施的能力建设方面的投资有限。
本综述旨在确定非洲、亚洲、拉丁美洲和加勒比地区(LAC)当前的卫生数据科学能力建设举措和差距,以支持知识共享与合作,并为未来的举措和相关投资提供信息。
我们使用PubMed和Scopus进行了文献综述,并在谷歌上进行了灰色文献搜索以识别相关举措。根据纳入标准对文章进行筛选。
从212条记录中,85条符合纳入标准,其中20条来自PubMed和Scopus,65条来自灰色文献。大多数项目是针对特定疾病领域量身定制的,因地区而异。尽管做出了这些努力,但针对数据科学能力建设以加速全球研究见解的明确、有记录的战略举措有限,大多数采用的是零散的方法。
尽管数据科学方法已融入中低收入国家的卫生研究举措,但仍需要一个关于数据科学能力建设的标准化框架,以促进多学科和全球合作。结构化方法、跨学科、跨区域联系以及强有力的影响评估对于在这些环境中推进卫生研究见解都至关重要。