Suppr超能文献

两个空穴自旋量子比特的各向异性交换相互作用。

Anisotropic exchange interaction of two hole-spin qubits.

作者信息

Geyer Simon, Hetényi Bence, Bosco Stefano, Camenzind Leon C, Eggli Rafael S, Fuhrer Andreas, Loss Daniel, Warburton Richard J, Zumbühl Dominik M, Kuhlmann Andreas V

机构信息

Department of Physics, University of Basel, Basel, Switzerland.

IBM Research Europe-Zurich, Rüschlikon, Switzerland.

出版信息

Nat Phys. 2024;20(7):1152-1157. doi: 10.1038/s41567-024-02481-5. Epub 2024 May 6.

Abstract

Semiconductor spin qubits offer the potential to employ industrial transistor technology to produce large-scale quantum computers. Silicon hole spin qubits benefit from fast all-electrical qubit control and sweet spots to counteract charge and nuclear spin noise. However, the demonstration of a two-qubit interaction has remained an open challenge. One missing factor is an understanding of the exchange coupling in the presence of a strong spin-orbit interaction. Here we study two hole-spin qubits in a silicon fin field-effect transistor, the workhorse device of today's semiconductor industry. We demonstrate electrical tunability of the exchange splitting from above 500 MHz to close-to-off and perform a conditional spin-flip in 24 ns. The exchange is anisotropic because of the spin-orbit interaction. Upon tunnelling from one quantum dot to the other, the spin is rotated by almost 180 degrees. The exchange Hamiltonian no longer has the Heisenberg form and can be engineered such that it enables two-qubit controlled rotation gates without a trade-off between speed and fidelity. This ideal behaviour applies over a wide range of magnetic field orientations, rendering the concept robust with respect to variations from qubit to qubit, indicating that it is a suitable approach for realizing a large-scale quantum computer.

摘要

半导体自旋量子比特为利用工业晶体管技术制造大规模量子计算机提供了潜力。硅空穴自旋量子比特受益于快速的全电量子比特控制以及抵消电荷和核自旋噪声的“甜点”。然而,双量子比特相互作用的演示仍然是一个悬而未决的挑战。一个缺失的因素是对存在强自旋轨道相互作用时的交换耦合的理解。在这里,我们研究了硅鳍场效应晶体管中的两个空穴自旋量子比特,这是当今半导体行业的主力器件。我们展示了交换分裂从500兆赫兹以上到接近关闭的电可调性,并在24纳秒内执行了条件自旋翻转。由于自旋轨道相互作用,交换是各向异性的。当从一个量子点隧穿到另一个量子点时,自旋旋转近180度。交换哈密顿量不再具有海森堡形式,并且可以进行设计,使得它能够实现双量子比特控制旋转门,而无需在速度和保真度之间进行权衡。这种理想行为适用于广泛的磁场取向范围,这使得该概念对于量子比特之间的变化具有鲁棒性,表明它是实现大规模量子计算机的合适方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e8f/11631753/5f50d84c691c/41567_2024_2481_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验