Gilbert Will, Tanttu Tuomo, Lim Wee Han, Feng MengKe, Huang Jonathan Y, Cifuentes Jesus D, Serrano Santiago, Mai Philip Y, Leon Ross C C, Escott Christopher C, Itoh Kohei M, Abrosimov Nikolay V, Pohl Hans-Joachim, Thewalt Michael L W, Hudson Fay E, Morello Andrea, Laucht Arne, Yang Chih Hwan, Saraiva Andre, Dzurak Andrew S
School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, New South Wales, Australia.
Diraq, Sydney, New South Wales, Australia.
Nat Nanotechnol. 2023 Feb;18(2):131-136. doi: 10.1038/s41565-022-01280-4. Epub 2023 Jan 12.
Once called a 'classically non-describable two-valuedness' by Pauli, the electron spin forms a qubit that is naturally robust to electric fluctuations. Paradoxically, a common control strategy is the integration of micromagnets to enhance the coupling between spins and electric fields, which, in turn, hampers noise immunity and adds architectural complexity. Here we exploit a switchable interaction between spins and orbital motion of electrons in silicon quantum dots, without a micromagnet. The weak effects of relativistic spin-orbit interaction in silicon are enhanced, leading to a speed up in Rabi frequency by a factor of up to 650 by controlling the energy quantization of electrons in the nanostructure. Fast electrical control is demonstrated in multiple devices and electronic configurations. Using the electrical drive, we achieve a coherence time T ≈ 50 μs, fast single-qubit gates with T = 3 ns and gate fidelities of 99.93%, probed by randomized benchmarking. High-performance all-electrical control improves the prospects for scalable silicon quantum computing.
电子自旋曾被泡利称为“经典的不可描述的二值性”,它构成了一个量子比特,对电波动具有天然的鲁棒性。矛盾的是,一种常见的控制策略是集成微磁体,以增强自旋与电场之间的耦合,而这反过来又会削弱抗噪声能力并增加架构复杂性。在这里,我们利用硅量子点中自旋与电子轨道运动之间的可切换相互作用,而无需微磁体。硅中相对论性自旋 - 轨道相互作用的微弱效应得到增强,通过控制纳米结构中电子的能量量子化,拉比频率加快了高达650倍。在多个器件和电子配置中展示了快速电控制。使用电驱动,我们实现了相干时间T≈50 μs、T = 3 ns的快速单量子比特门以及通过随机基准测试探测的99.93%的门保真度。高性能的全电控制改善了可扩展硅量子计算的前景。