Ayala-García Paula, Herrero-Gómez Irene, Jiménez-Guerrero Irene, Otto Viktoria, Moreno-de Castro Natalia, Müsken Mathias, Jänsch Lothar, van Ham Marco, Vinardell José-María, López-Baena Francisco Javier, Ollero Francisco Javier, Pérez-Montaño Francisco, Borrero-de Acuña José Manuel
Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain.
Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
J Proteome Res. 2025 Jan 3;24(1):94-110. doi: 10.1021/acs.jproteome.4c00444. Epub 2024 Dec 12.
Prokaryotes and eukaryotes secrete extracellular vesicles (EVs) into the surrounding milieu to preserve and transport elevated concentrations of biomolecules across long distances. EVs encapsulate metabolites, DNA, RNA, and proteins, whose abundance and composition fluctuate depending on environmental cues. EVs are involved in eukaryote-to-prokaryote communication owing to their ability to navigate different ecological niches and exchange molecular cargo between the two domains. Among the different bacterium-host relationships, rhizobium-legume symbiosis is one of the closest known to nature. A crucial developmental stage of symbiosis is the formation of N-fixing root nodules by the plant. These nodules contain endocytosed rhizobia─called bacteroids─confined by plant-derived peribacteroid membranes. The unrestricted interface between the bacterial external membrane and the peribacteroid membrane is the peribacteroid space. Many molecular aspects of symbiosis have been studied, but the interbacterial and interdomain molecule trafficking by EVs in the peribacteroid space has not been questioned yet. Here, we unveil intensive EV trafficking within the symbiosome interface of several rhizobium-legume dual systems by developing a robust EV isolation procedure. We analyze the EV-encased proteomes from the peribacteroid space of each bacterium-host partnership, uncovering both conserved and differential traits of every symbiotic system. This study opens the gates for designing EV-based biotechnological tools for sustainable agriculture.
原核生物和真核生物会向周围环境中分泌细胞外囊泡(EVs),以保存并远距离运输高浓度的生物分子。细胞外囊泡包裹着代谢物、DNA、RNA和蛋白质,其丰度和组成会根据环境线索而波动。由于细胞外囊泡能够在不同的生态位中穿梭并在两个域之间交换分子货物,因此它们参与了真核生物与原核生物之间的交流。在不同的细菌与宿主关系中,根瘤菌与豆科植物的共生关系是自然界中已知最紧密的关系之一。共生的一个关键发育阶段是植物形成固氮根瘤。这些根瘤包含被植物来源的类菌体周膜包围的内吞根瘤菌(称为类菌体)。细菌外膜与类菌体周膜之间无限制的界面就是类菌体周质空间。人们已经对共生的许多分子层面进行了研究,但细胞外囊泡在类菌体周质空间中的细菌间和域间分子运输尚未受到质疑。在这里,我们通过开发一种强大的细胞外囊泡分离程序,揭示了几种根瘤菌 - 豆科植物二元系统共生体界面内大量的细胞外囊泡运输情况。我们分析了每个细菌 - 宿主组合的类菌体周质空间中包裹在细胞外囊泡内的蛋白质组,揭示了每个共生系统的保守和差异特征。这项研究为设计基于细胞外囊泡的可持续农业生物技术工具打开了大门。