用于脉冲神经网络的双端神经形态器件:神经元、突触及阵列集成
Two-Terminal Neuromorphic Devices for Spiking Neural Networks: Neurons, Synapses, and Array Integration.
作者信息
Kim Youngmin, Baek Ji Hyun, Im In Hyuk, Lee Dong Hyun, Park Min Hyuk, Jang Ho Won
机构信息
Department of Material Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.
Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea.
出版信息
ACS Nano. 2024 Dec 24;18(51):34531-34571. doi: 10.1021/acsnano.4c12884. Epub 2024 Dec 12.
The ever-increasing volume of complex data poses significant challenges to conventional sequential global processing methods, highlighting their inherent limitations. This computational burden has catalyzed interest in neuromorphic computing, particularly within artificial neural networks (ANNs). In pursuit of advancing neuromorphic hardware, researchers are focusing on developing computation strategies and constructing high-density crossbar arrays utilizing history-dependent, multistate nonvolatile memories tailored for multiply-accumulate (MAC) operations. However, the real-time collection and processing of massive, dynamic data sets require an innovative computational paradigm akin to that of the human brain. Spiking neural networks (SNNs), representing the third generation of ANNs, are emerging as a promising solution for real-time spatiotemporal information processing due to their event-based spatiotemporal capabilities. The ideal hardware supporting SNN operations comprises artificial neurons, artificial synapses, and their integrated arrays. Currently, the structural complexity of SNNs and spike-based methodologies requires hardware components with biomimetic behaviors that are distinct from those of conventional memristors used in deep neural networks. These distinctive characteristics required for neuron and synapses devices pose significant challenges. Developing effective building blocks for SNNs, therefore, necessitates leveraging the intrinsic properties of the materials constituting each unit and overcoming the integration barriers. This review focuses on the progress toward memristor-based spiking neural network neuromorphic hardware, emphasizing the role of individual components such as memristor-based neurons, synapses, and array integration along with relevant biological insights. We aim to provide valuable perspectives to researchers working on the next generation of brain-like computing systems based on these foundational elements.
日益增长的复杂数据量给传统的顺序全局处理方法带来了重大挑战,凸显了它们固有的局限性。这种计算负担激发了人们对神经形态计算的兴趣,尤其是在人工神经网络(ANN)领域。为了推动神经形态硬件的发展,研究人员正专注于开发计算策略,并利用为乘法累加(MAC)操作量身定制的基于历史的多状态非易失性存储器构建高密度交叉阵列。然而,海量动态数据集的实时收集和处理需要一种类似于人类大脑的创新计算范式。脉冲神经网络(SNN)作为第三代人工神经网络,因其基于事件的时空能力,正成为实时时空信息处理的一个有前途的解决方案。支持SNN操作的理想硬件包括人工神经元、人工突触及其集成阵列。目前,SNN的结构复杂性和基于脉冲的方法需要具有仿生行为的硬件组件,这些组件与深度神经网络中使用的传统忆阻器不同。神经元和突触器件所需的这些独特特性带来了重大挑战。因此,开发有效的SNN构建模块需要利用构成每个单元的材料的固有特性,并克服集成障碍。本文综述聚焦于基于忆阻器的脉冲神经网络神经形态硬件的进展,强调基于忆阻器的神经元、突触等单个组件以及阵列集成的作用,以及相关的生物学见解。我们旨在为基于这些基础元素致力于下一代类脑计算系统研究的人员提供有价值的观点。