Jia Jing, Zhang Xiaobo, Li Yiran, Wang Tian, An Ying, Yan Xinrong, Liu Bin, Yang Chaoyi, Ju Huangxian
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Small. 2025 Feb;21(5):e2410535. doi: 10.1002/smll.202410535. Epub 2024 Dec 12.
Spatiotemporally controlled cancer therapy may offer great advantages in precision medicine, but still remains some challenges in programmed sequential release and co-localization of components at target sites. Herein, a MXene-based nanoprobe (TCC@M) is meticulously designed by engineering of photodynamically activated CRISPR-Cas9 and cancer cell membrane-camouflaged TiC MXenes for targeting delivery and spatiotemporally controlled gene regulation followed by enhanced photothermal therapy (PTT) via two near-infrared irradiations. The first irradiation can activate the photosensitizer bound in cancer cells internalized TCC@M to release Cas9 ribonucleoprotein (RNP) by photodynamic effect. The released Cas9 RNP then enters the nuclei directed by the fused nuclear localization sequence in Cas9 to cleave the heat shock protein (HSP) 90α gene, which greatly reduces the expression of HSP90α protein and thus effectively sensitizes cancer cells to heat, leading to enhanced PTT at a mild temperature (<45 °C) risen by Ti₃C₂ MXenes under the second irradiation. Simultaneously, TCC@M can produce fluorescence, photoacoustic, and thermal imaging signals to guide the optimal irradiation timing. The in vivo studies have demonstrated the spatiotemporally selective therapeutic efficacy of the designed TCC@M. This innovative approach presents an effective integration of gene regulation and enhanced PTT, exemplifying a precise cancer treatment strategy.
时空可控的癌症治疗在精准医学中可能具有巨大优势,但在组件的程序性顺序释放和在靶位点的共定位方面仍存在一些挑战。在此,通过光动力激活的CRISPR-Cas9工程和癌细胞膜伪装的TiC MXene精心设计了一种基于MXene的纳米探针(TCC@M),用于靶向递送和时空可控的基因调控,随后通过两次近红外照射增强光热疗法(PTT)。第一次照射可激活内化TCC@M的癌细胞中结合的光敏剂,通过光动力效应释放Cas9核糖核蛋白(RNP)。释放的Cas9 RNP然后在Cas9中融合的核定位序列的引导下进入细胞核,切割热休克蛋白(HSP)90α基因,这大大降低了HSP90α蛋白的表达,从而有效地使癌细胞对热敏感,导致在第二次照射下由Ti₃C₂ MXene在温和温度(<45°C)下增强PTT。同时,TCC@M可以产生荧光、光声和热成像信号,以指导最佳照射时间。体内研究证明了所设计的TCC@M的时空选择性治疗效果。这种创新方法展示了基因调控和增强PTT的有效整合,是一种精确癌症治疗策略的典范。