Cain Rebecca L, Webb Ian K
Department of Chemistry and Chemical Biology, Indiana University─Indianapolis, Indianapolis, Indiana 46202, United States.
Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.
J Am Soc Mass Spectrom. 2025 Jan 1;36(1):153-160. doi: 10.1021/jasms.4c00388. Epub 2024 Dec 12.
Electrospray ionization mass spectrometry (ESI-MS) can retain intact protein structures, but details about partially folded and unfolded protein structures during and after introduction to the gas phase are elusive. Here we use ESI-MS with chemical cross-linkers to compare denatured cytochrome structures in both solution and gas phases. Solution phase cross-linking prior to ESI captures solution phase structures, while gas phase cross-linking through ion/ion reactions in the trap cell captures gas phase structures. Comparing the ECD fragmentation of the cross-linked products under both conditions shows very similar cross-linker identifications, alluding to no major structural dissimilarities between solution and gas structures. Molecular modeling of the denatured protein using the identified cross-linked sites as distant restraints allows for visualization of the denatured structures to pinpoint where unfolding begins. Our data suggest that cytochrome likely begins to unfold due to interior hydrophobic expansion, followed by α helical unfolding. This localization of structural changes is more specific than using CCS measurements alone.
电喷雾电离质谱(ESI-MS)能够保留完整的蛋白质结构,但对于蛋白质在引入气相过程中及之后的部分折叠和未折叠结构的细节却难以捉摸。在此,我们使用带有化学交联剂的ESI-MS来比较变性细胞色素在溶液相和气相中的结构。在电喷雾电离之前进行溶液相交联可捕获溶液相结构,而通过阱池中离子/离子反应进行的气相交联则捕获气相结构。比较两种条件下交联产物的电子捕获解离(ECD)碎片显示出非常相似的交联剂识别结果,这暗示溶液相和气相结构之间不存在重大的结构差异。利用所识别的交联位点作为远程限制条件对变性蛋白质进行分子建模,能够可视化变性结构,从而精确确定展开起始的位置。我们的数据表明,细胞色素可能由于内部疏水膨胀而开始展开,随后α螺旋展开。这种结构变化的定位比单独使用截面面积(CCS)测量更为具体。