Suppr超能文献

压力时效:释放高压材料研究力量的有效过程。

Pressure aging: An effective process to liberate the power of high-pressure materials research.

作者信息

Luo Hui, Xuan Hongli, Wang Dong, Du Ziwan, Li Zhongyang, Bu Kejun, Guo Songhao, Mao Yuhong, Lan Fujun, Liu Fuyang, Yin Yanfeng, Tian Wenming, Hu Qingyang, Liu Gang, Liu Haozhe, Zeng Qiaoshi, Ding Yang, Fu Yongping, Li Qian, Jin Shengye, Yang Wenge, Mao Ho-Kwang, Lü Xujie

机构信息

Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China.

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

出版信息

Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2416835121. doi: 10.1073/pnas.2416835121. Epub 2024 Dec 12.

Abstract

High pressure can create extreme conditions that enable the formation of novel materials and the discovery of new phenomena. However, the ability to preserve the desirable characteristics of materials obtained under high pressure has remained an elusive challenge, as the pressure-induced changes are typically reversible, except for the pressure-induced chemical reactions such as polymerization of hydrocarbons. Here, we propose the concept of "pressure aging" (PA) that enables the permanent locking-in of high-pressure structures and their associated enhanced properties in functional materials. Specifically, through the application of PA at 3.3 GPa for 24 h, the two-dimensional ferroelectric CuInPS exhibits a permanent change in Cu configuration after the pressure is fully released. This leads to a 2.5-fold enhancement in remanent polarization and an increase in from 317 K to 583 K. In contrast, the samples underwent a compression-decompression cycle but without PA showed only reversible changes in their characteristics. We elucidate the relaxation dynamics during PA using the Kohlrausch-Williams-Watts function, providing valuable insights into the temporal evolution of both structural and property changes. Furthermore, the broad applicability of PA strategy has been validated across different materials, underscoring its versatility. Notably, the pressures involved are industrially attainable, and the sample sizes are scalable. Consequently, the implementation of this impactful PA approach introduces a groundbreaking unique dimension to high-pressure research, with significant potential across various scientific domains.

摘要

高压能够创造出极端条件,从而促成新型材料的形成以及新现象的发现。然而,保持在高压下获得的材料的理想特性一直是一项难以实现的挑战,因为除了诸如碳氢化合物聚合等压力诱导的化学反应外,压力引起的变化通常是可逆的。在此,我们提出了“压力老化”(PA)的概念,它能够将高压结构及其在功能材料中的相关增强特性永久锁定。具体而言,通过在3.3吉帕压力下施加24小时的压力老化,二维铁电体CuInPS在压力完全释放后,铜的构型发生了永久性变化。这导致剩余极化增强了2.5倍,居里温度从317开尔文提高到583开尔文。相比之下,经历了压缩 - 解压循环但未进行压力老化的样品,其特性仅表现出可逆变化。我们使用科尔劳施 - 威廉姆斯 - 瓦特函数阐明了压力老化过程中的弛豫动力学,为结构和性能变化的时间演化提供了有价值的见解。此外,压力老化策略的广泛适用性已在不同材料中得到验证,突显了其通用性。值得注意的是,所涉及的压力在工业上是可以实现的,并且样品尺寸可以扩大。因此,这种有影响力的压力老化方法的实施为高压研究引入了一个开创性的独特维度,在各个科学领域都具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a7/11665915/ce3e9f523fbd/pnas.2416835121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验