Luo Hui, Bu Kejun, Yin Yanfeng, Wang Dong, Shi Cuimi, Guo Songhao, Fu Tonghuan, Liang Jiayuan, Liu Bingyan, Zhang Dongzhou, Xu Liang-Jin, Hu Qingyang, Ding Yang, Jin Shengye, Yang Wenge, Ma Biwu, Lü Xujie
Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China.
State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China.
Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202304494. doi: 10.1002/anie.202304494. Epub 2023 Aug 4.
Low-dimensional (low-D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low-D OMHHs, especially the zero-D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near-unity photoluminescence quantum yield (PLQY) at around 6.0 GPa in a 0D OMHH, [(C H ) P] SbCl . In situ experimental characterizations and theoretical simulations reveal that the pressure-induced electronic coupling between the lone-pair electrons of Sb and the π electrons of benzene ring (lp-π interaction) serves as an unexpected "bridge" for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp-π interactions in organic-inorganic hybrid systems.
低维(低D)有机金属卤化物杂化物(OMHHs)因其兼具有机和无机组分的综合特性,已成为光电子学领域引人关注的候选材料。然而,对于大多数低D OMHHs,特别是零维(0D)化合物,有机配体与无机金属卤化物之间较差的电子耦合阻碍了杂化界面处的有效电荷转移,从而限制了它们光学和电子性质的进一步可调性。在此,通过施加压力来调节界面相互作用,实现了从有机配体到金属卤化物的有效电荷转移,这使得一种0D OMHH,即[(C₆H₅)₃P]₂SbCl₆在约6.0 GPa压力下的光致发光量子产率(PLQY)接近100%。原位实验表征和理论模拟表明,压力诱导的Sb孤对电子与苯环π电子之间的电子耦合(lp-π相互作用)为电荷转移提供了意想不到的“桥梁”。我们的工作通过调控有机-无机杂化体系中的lp-π相互作用,为新材料设计开辟了一种通用策略。