Zheng Tianying, Zhu Yajing, Chen Yidi, Mai Shengshi, Xu Lixin, Jiang Hanyu, Duan Ting, Wu Yuanan, Qu Yali, Chen Yinan, Song Bin
Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
SenseTime Research, Shanghai, China.
Insights Imaging. 2024 Dec 12;15(1):298. doi: 10.1186/s13244-024-01872-9.
To develop and externally validate a fully automated diagnostic convolutional neural network (CNN) model for cirrhosis based on liver MRI and serum biomarkers.
This multicenter retrospective study included consecutive patients receiving pathological evaluation of liver fibrosis stage and contrast-enhanced liver MRI between March 2010 and January 2024. On the training dataset, an MRI-based CNN model was constructed for cirrhosis against pathology, and then a combined model was developed integrating the CNN model and serum biomarkers. On the testing datasets, the area under the receiver operating characteristic curve (AUC) was computed to compare the diagnostic performance of the combined model with that of aminotransferase-to-platelet ratio index (APRI), fibrosis-4 index (FIB-4), and radiologists. The influence of potential confounders on the diagnostic performance was evaluated by subgroup analyses.
A total of 1315 patients (median age, 54 years; 1065 men; training, n = 840) were included, 855 (65%) with pathological cirrhosis. The CNN model was constructed on pre-contrast T1- and T2-weighted imaging, and the combined model was developed integrating the CNN model, age, and eight serum biomarkers. On the external testing dataset, the combined model achieved an AUC of 0.86, which outperformed FIB-4, APRI and two radiologists (AUC: 0.67 to 0.73, all p < 0.05). Subgroup analyses revealed comparable diagnostic performances of the combined model in patients with different sizes of focal liver lesions.
Based on pre-contrast T1- and T2-weighted imaging, age, and serum biomarkers, the combined model allowed diagnosis of cirrhosis with moderate accuracy, independent of the size of focal liver lesions.
The fully automated convolutional neural network model utilizing pre-contrast MR imaging, age and serum biomarkers demonstrated moderate accuracy, outperforming FIB-4, APRI, and radiologists, independent of size of focal liver lesions, potentially facilitating noninvasive diagnosis of cirrhosis pending further validation.
This fully automated convolutional neural network (CNN) model, using pre-contrast MRI, age, and serum biomarkers, diagnoses cirrhosis. The CNN model demonstrated an external testing dataset AUC of 0.86, independent of the size of focal liver lesions. The CNN model outperformed aminotransferase-to-platelet ratio index, fibrosis-4 index, and radiologists, potentially facilitating noninvasive diagnosis of cirrhosis.
开发并外部验证一种基于肝脏MRI和血清生物标志物的用于肝硬化诊断的全自动卷积神经网络(CNN)模型。
这项多中心回顾性研究纳入了2010年3月至2024年1月期间接受肝纤维化分期病理评估和肝脏对比增强MRI检查的连续患者。在训练数据集上,构建基于MRI的针对肝硬化的CNN模型以与病理结果进行对比,然后开发一个整合了CNN模型和血清生物标志物的联合模型。在测试数据集上,计算受试者操作特征曲线下面积(AUC),以比较联合模型与谷丙转氨酶与血小板比值指数(APRI)、纤维化-4指数(FIB-4)以及放射科医生的诊断性能。通过亚组分析评估潜在混杂因素对诊断性能的影响。
共纳入1315例患者(中位年龄54岁;男性1065例;训练组n = 840),其中855例(65%)有病理诊断的肝硬化。CNN模型基于平扫T1加权和T2加权成像构建,联合模型整合了CNN模型、年龄和8种血清生物标志物。在外部测试数据集上,联合模型的AUC为0.86,优于FIB-4、APRI以及两位放射科医生(AUC:0.67至0.73,均p < 0.05)。亚组分析显示联合模型在不同大小局灶性肝病变患者中的诊断性能相当。
基于平扫T1加权和T2加权成像、年龄和血清生物标志物,联合模型能够以中等准确度诊断肝硬化,且与局灶性肝病变大小无关。
利用平扫MR成像、年龄和血清生物标志物的全自动卷积神经网络模型显示出中等准确度,优于FIB-4、APRI以及放射科医生,与局灶性肝病变大小无关,在进一步验证之前可能有助于肝硬化的无创诊断。
这个使用平扫MRI、年龄和血清生物标志物的全自动卷积神经网络(CNN)模型可诊断肝硬化。该CNN模型在外部测试数据集上的AUC为0.86,与局灶性肝病变大小无关。该CNN模型优于谷丙转氨酶与血小板比值指数、纤维化-4指数以及放射科医生,可能有助于肝硬化的无创诊断。