Suppr超能文献

利用[镓]镓-PSMA-11 PET/MRI对原发性前列腺癌患者进行术前前列腺外肿瘤扩展的检测。

Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing [Ga]Ga-PSMA-11 PET/MRI.

作者信息

Spielvogel Clemens P, Ning Jing, Kluge Kilian, Haberl David, Wasinger Gabriel, Yu Josef, Einspieler Holger, Papp Laszlo, Grubmüller Bernhard, Shariat Shahrokh F, Baltzer Pascal A T, Clauser Paola, Hartenbach Markus, Kenner Lukas, Hacker Marcus, Haug Alexander R, Rasul Sazan

机构信息

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.

Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria.

出版信息

Insights Imaging. 2024 Dec 12;15(1):299. doi: 10.1186/s13244-024-01876-5.

Abstract

OBJECTIVES

Radical prostatectomy (RP) is a common intervention in patients with localized prostate cancer (PCa), with nerve-sparing RP recommended to reduce adverse effects on patient quality of life. Accurate pre-operative detection of extraprostatic extension (EPE) remains challenging, often leading to the application of suboptimal treatment. The aim of this study was to enhance pre-operative EPE detection through multimodal data integration using explainable machine learning (ML).

METHODS

Patients with newly diagnosed PCa who underwent [Ga]Ga-PSMA-11 PET/MRI and subsequent RP were recruited retrospectively from two time ranges for training, cross-validation, and independent validation. The presence of EPE was measured from post-surgical histopathology and predicted using ML and pre-operative parameters, including PET/MRI-derived features, blood-based markers, histology-derived parameters, and demographic parameters. ML models were subsequently compared with conventional PET/MRI-based image readings.

RESULTS

The study involved 107 patients, 59 (55%) of whom were affected by EPE according to postoperative findings for the initial training and cross-validation. The ML models demonstrated superior diagnostic performance over conventional PET/MRI image readings, with the explainable boosting machine model achieving an AUC of 0.88 (95% CI 0.87-0.89) during cross-validation and an AUC of 0.88 (95% CI 0.75-0.97) during independent validation. The ML approach integrating invasive features demonstrated better predictive capabilities for EPE compared to visual clinical read-outs (Cross-validation AUC 0.88 versus 0.71, p = 0.02).

CONCLUSION

ML based on routinely acquired clinical data can significantly improve the pre-operative detection of EPE in PCa patients, potentially enabling more accurate clinical staging and decision-making, thereby improving patient outcomes.

CRITICAL RELEVANCE STATEMENT

This study demonstrates that integrating multimodal data with machine learning significantly improves the pre-operative detection of extraprostatic extension in prostate cancer patients, outperforming conventional imaging methods and potentially leading to more accurate clinical staging and better treatment decisions.

KEY POINTS

Extraprostatic extension is an important indicator guiding treatment approaches. Current assessment of extraprostatic extension is difficult and lacks accuracy. Machine learning improves detection of extraprostatic extension using PSMA-PET/MRI and histopathology.

摘要

目的

根治性前列腺切除术(RP)是局限性前列腺癌(PCa)患者的常见干预措施,推荐采用保留神经的RP以减少对患者生活质量的不良影响。术前准确检测前列腺外侵犯(EPE)仍然具有挑战性,常常导致治疗方案欠佳。本研究的目的是通过使用可解释机器学习(ML)进行多模态数据整合来提高术前EPE检测水平。

方法

回顾性招募两个时间段内新诊断为PCa且接受了[镓]镓-PSMA-11 PET/MRI检查及后续RP的患者,用于训练、交叉验证和独立验证。根据术后组织病理学测量EPE的存在情况,并使用ML和术前参数进行预测,这些参数包括PET/MRI衍生特征、血液标志物、组织学衍生参数和人口统计学参数。随后将ML模型与基于传统PET/MRI的图像解读进行比较。

结果

该研究纳入了107例患者,根据初始训练和交叉验证的术后结果,其中59例(55%)存在EPE。ML模型在诊断性能上优于传统PET/MRI图像解读,可解释增强机器模型在交叉验证期间的AUC为0.88(95%CI 0.87-0.89),在独立验证期间的AUC为0.88(95%CI 0.75-0.97)。与视觉临床读数相比,整合侵入性特征的ML方法对EPE具有更好的预测能力(交叉验证AUC为0.88对0.71,p = 0.02)。

结论

基于常规获取的临床数据的ML可显著改善PCa患者术前EPE的检测,有可能实现更准确的临床分期和决策,从而改善患者预后。

关键相关性声明

本研究表明,将多模态数据与机器学习相结合可显著改善前列腺癌患者术前前列腺外侵犯的检测,优于传统成像方法,并有可能实现更准确的临床分期和更好的治疗决策。

要点

前列腺外侵犯是指导治疗方法的重要指标。目前对前列腺外侵犯的评估困难且缺乏准确性。机器学习利用PSMA-PET/MRI和组织病理学改善了前列腺外侵犯的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/980a/11638435/8e1518dbae8a/13244_2024_1876_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验