Lee Woo Seok, Cho Yeongsu, Paritmongkol Watcharaphol, Sakurada Tomoaki, Ha Seung Kyun, Kulik Heather J, Tisdale William A
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
ACS Nano. 2024 Dec 24;18(51):35066-35074. doi: 10.1021/acsnano.4c15118. Epub 2024 Dec 12.
Alloying is a powerful strategy for tuning the electronic band structure and optical properties of semiconductors. Here, we investigate the thermodynamic stability and excitonic properties of mixed-chalcogen alloys of two-dimensional (2D) hybrid organic-inorganic silver phenylchalcogenides (AgEPh; E = S, Se, Te). Using a variety of structural and optical characterization techniques, we demonstrate that the AgSePh-AgTePh system forms homogeneous alloys (AgSeTePh, 0 ≤ ≤ 1) across all compositions, whereas the AgSPh-AgSePh and AgSPh-AgTePh systems exhibit distinct miscibility gaps. Density functional theory calculations reveal that chalcogen mixing is energetically unfavorable in all cases but comparable in magnitude to the ideal entropy of mixing at room temperature. Because AgSePh and AgTePh have the same crystal structure (which is different from AgSPh), alloying is predicted to be thermodynamically preferred over phase separation in the case of AgSePh-AgTePh, whereas phase separation is predicted to be more favorable than alloying for both the AgSPh-AgSePh and AgSPh-AgTePh systems, in agreement with experimental observations. Homogeneous AgSeTePh alloys exhibit continuously tunable excitonic absorption resonances in the ultraviolet-visible range, while the emission spectrum reveals competition between exciton delocalization (characteristic of AgSePh) and localization behavior (characteristic of AgTePh). Overall, these observations provide insight into the thermodynamics of 2D silver phenylchalcogenides and the effect of lattice composition on electron-phonon interactions in 2D hybrid organic-inorganic semiconductors.
合金化是调节半导体电子能带结构和光学性质的一种有效策略。在此,我们研究二维(2D)混合有机-无机苯基硫族银化物(AgEPh;E = S、Se、Te)的混合硫族化物合金的热力学稳定性和激子性质。通过使用各种结构和光学表征技术,我们证明AgSePh-AgTePh体系在所有组成范围内都形成了均匀合金(AgSeTePh,0 ≤ ≤ 1),而AgSPh-AgSePh和AgSPh-AgTePh体系表现出明显的混溶间隙。密度泛函理论计算表明,在所有情况下硫族元素混合在能量上都是不利的,但在室温下其大小与理想混合熵相当。由于AgSePh和AgTePh具有相同的晶体结构(与AgSPh不同),预计在AgSePh-AgTePh体系中合金化在热力学上优于相分离,而对于AgSPh-AgSePh和AgSPh-AgTePh体系,预计相分离比合金化更有利,这与实验观察结果一致。均匀的AgSeTePh合金在紫外-可见范围内表现出连续可调的激子吸收共振,而发射光谱揭示了激子离域(AgSePh的特征)和局域行为(AgTePh的特征)之间的竞争。总体而言,这些观察结果为二维苯基硫族银化物的热力学以及晶格组成对二维混合有机-无机半导体中电子-声子相互作用的影响提供了深入了解。