Suppr超能文献

Better power by design: Permuted-subblock randomization boosts power in repeated-measures experiments.

作者信息

Liang Jinghui, Barr Dale J

机构信息

School of Psychology & Neuroscience, University of Glasgow.

出版信息

Psychol Methods. 2024 Dec 12. doi: 10.1037/met0000717.

Abstract

During an experimental session, participants adapt and change due to learning, fatigue, fluctuations in attention, or other physiological or environmental changes. This temporal variation affects measurement, potentially reducing statistical power. We introduce a restricted randomization algorithm, permuted-subblock randomization (PSR), that boosts power by balancing experimental conditions over the course of an experimental session. We used Monte Carlo simulations to explore the performance of PSR across four scenarios of time-dependent error: exponential decay (learning effect), Gaussian random walk, pink noise, and a mixture of the previous three. PSR boosted power by about 13% on average, with a range from 4% to 45% across a representative set of study designs, while simultaneously controlling the false positive rate when time-dependent variation was absent. An R package, explan, provides functions to implement PSR during experiment planning. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验