Suppr超能文献

由球形和环形空化泡相互作用引起的微射流形成。

Micro-jet formation induced by the interaction of a spherical and toroidal cavitation bubble.

作者信息

Mur Jaka, Bußmann Alexander, Paula Thomas, Adami Stefan, Adams Nikolaus A, Petkovsek Rok, Ohl Claus-Dieter

机构信息

Faculty of Natural Sciences, Institute for Physics, Department Soft Matter, Otto-von-Guericke University Magdeburg, Magdeburg, 39106, Germany; Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, Ljubljana, 1000, Slovenia.

Chair of Aerodynamics and Fluid Mechanics, TUM School of Engineering and Design, Technical University of Munich, Garching bei München, 85748, Germany; Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Technical University of Munich, Garching bei München, 85748, Germany.

出版信息

Ultrason Sonochem. 2025 Jan;112:107185. doi: 10.1016/j.ultsonch.2024.107185. Epub 2024 Dec 6.

Abstract

We investigate experimentally and numerically the interaction between a spherical cavitation bubble and a wall-bounded toroidal cavitation bubble. We demonstrate that shock wave focusing following toroidal bubble initiation induces the formation of micro-jets that pierce the spherical bubble in the torus-axis direction away from the surface, strongest in the anti-phase scenario. The velocity of micro-jets is determined by the initial standoff distance of the spherical bubble from the wall and thus from the toroidal bubble, with peak jet velocities approaching 1000m/s. The micro-jets are triggered by the complex interaction between the torus shock wave and the surface of the spherical bubble. Additionally, the formation of secondary cavitation appears to significantly enhance the micro-jets compared to scenarios without secondary cavitation. Following the formation of micro-jets, a subsequent broad jet pierces the spherical bubble, marking the onset of its collapse. After the collapse, we observe an amplified rebound phase resulting in a more than twofold increase of the bubble volume compared to the initial bubble.

摘要

我们通过实验和数值模拟研究了球形空化泡与壁面环形空化泡之间的相互作用。我们证明,环形泡起始后产生的冲击波聚焦会诱导微射流的形成,这些微射流会在远离表面的环面轴方向上穿透球形泡,在反相情况下最为强烈。微射流的速度取决于球形泡与壁面以及环形泡之间的初始间距,峰值射流速度接近1000米/秒。微射流是由环形冲击波与球形泡表面之间的复杂相互作用引发的。此外,与没有二次空化的情况相比,二次空化的形成似乎显著增强了微射流。在微射流形成之后,随后会有一股宽阔的射流穿透球形泡,标志着其开始坍塌。坍塌之后,我们观察到一个放大的反弹阶段,与初始泡相比,泡体积增加了两倍多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42e/11697795/e3b7b5578586/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验