Suppr超能文献

延迟知识转移:基于尖峰表示的脑电信号,从延迟刺激到脑电进行跨模态知识转移以实现持续注意力检测。

Delayed knowledge transfer: Cross-modal knowledge transfer from delayed stimulus to EEG for continuous attention detection based on spike-represented EEG signals.

作者信息

Sun Pengfei, De Winne Jorg, Zhang Malu, Devos Paul, Botteldooren Dick

机构信息

WAVES Research Group, Department of Information Technology, Ghent University, Gent, Belgium.

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.

出版信息

Neural Netw. 2025 Mar;183:107003. doi: 10.1016/j.neunet.2024.107003. Epub 2024 Dec 6.

Abstract

Decoding visual and auditory stimuli from brain activities, such as electroencephalography (EEG), offers promising advancements for enhancing machine-to-human interaction. However, effectively representing EEG signals remains a significant challenge. In this paper, we introduce a novel Delayed Knowledge Transfer (DKT) framework that employs spiking neurons for attention detection, using our experimental EEG dataset. This framework extracts patterns from audiovisual stimuli to model brain responses in EEG signals, while accounting for inherent response delays. By aligning audiovisual features with EEG signals through a shared embedding space, our approach improves the performance of brain-computer interface (BCI) systems. We also present WithMeAttention, a multimodal dataset designed to facilitate research in continuously distinguishing between target and distractor responses. Our methodology demonstrates a 3% improvement in accuracy on the WithMeAttention dataset compared to a baseline model that decodes EEG signals from scratch. This significant performance increase highlights the effectiveness of our approach Comprehensive analysis across four distinct conditions shows that rhythmic enhancement of visual information can optimize multi-sensory information processing. Notably, the two conditions featuring rhythmic target presentation - with and without accompanying beeps - achieved significantly superior performance compared to other scenarios. Furthermore, the delay distribution observed under different conditions indicates that our delay layer effectively emulates the neural processing delays in response to stimuli.

摘要

从脑电图(EEG)等大脑活动中解码视觉和听觉刺激,为增强人机交互提供了有前景的进展。然而,有效表示EEG信号仍然是一项重大挑战。在本文中,我们引入了一种新颖的延迟知识转移(DKT)框架,该框架使用我们的实验EEG数据集,利用脉冲神经元进行注意力检测。该框架从视听刺激中提取模式,以对EEG信号中的大脑反应进行建模,同时考虑固有的反应延迟。通过在共享嵌入空间中将视听特征与EEG信号对齐,我们的方法提高了脑机接口(BCI)系统的性能。我们还展示了WithMeAttention,这是一个多模态数据集,旨在促进对连续区分目标和干扰物反应的研究。与从零开始解码EEG信号的基线模型相比,我们的方法在WithMeAttention数据集上的准确率提高了3%。这一显著的性能提升突出了我们方法的有效性。对四种不同条件的综合分析表明,视觉信息的节律增强可以优化多感官信息处理。值得注意的是,与其他场景相比,有节奏目标呈现的两种条件——有和没有伴随哔哔声——实现了显著优越的性能。此外,在不同条件下观察到的延迟分布表明,我们的延迟层有效地模拟了对刺激的神经处理延迟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验